水素イオン指数





pHの値と、よく知られている溶液の関係の例(イラスト。ただし文字は英語表記)。下部がpH=0に相当し強酸性、上部がpH=14前後に相当し強アルカリ性。


水素イオン指数(すいそイオンしすう、独: Wasserstoffionenexponent[1])とは、溶液の液性(酸性・アルカリ性の程度)を表す物理量で、記号pH(英:potential of hydrogen)で表す。水素イオン濃度指数[2]または水素指数[3]とも呼ばれる。1909年にデンマークの生化学者セーレン・セーレンセンが提案した[4]。現在は水素イオンの活量により定義される。


pHは、水素イオンのモル濃度をmol/Lで除した値の逆数の常用対数


pH=−log10⁡[H+]mol L−1displaystyle mathrm pH =-log _10frac [mathrm H^+ ]mathrm mol~L^-1 displaystyle mathrm pH =-log _10frac [mathrm H^+ ]mathrm mol~L^-1

として定義されたが、1924年にセーレンセンは水素イオンの活量の逆数の常用対数


pH=−log10⁡aH+displaystyle mathrm pH =-log _10a_mathrm H^+ displaystyle mathrm pH =-log _10a_mathrm H^+

に定義を改めた[5]。測定上の原理的な問題があるものの、活量を用いたこの定義が、概念上の定義としてIUPACやJISで現在採用されている[6][7]。しかしながら、希薄溶液において活量はモル濃度をmol/Lで除したものにほぼ等しいため、通常pHはモル濃度から計算される。通常は大気圧の下にある薄い水溶液の値を指す。酸や塩基の濃度が十分に低ければ、濁った水(懸濁液や乳濁液)でも測定可能である。


常温常圧の水溶液では、水溶液のpHが7より小さいときは酸性、7より大きいときはアルカリ性、7付近のときは中性である。pHが小さいほど水素イオン濃度は高い。pHが1減少すると水素イオン濃度は10倍になり、逆に1増加すると水素イオン濃度は10分の1になる。酸性の原因は水素イオンなので[8]、pHが中性のときの値よりも小さくなればなるほど酸性が強くなる。一方、アルカリ性の原因は水酸化物イオンである[9]。水溶液の水素イオン濃度が10分の1になると、質量作用の法則に従って水酸化物イオンの濃度は10倍になるので、pHが中性のときの値よりも大きくなればなるほどアルカリ性が強くなる。


質量パーセント濃度が数パーセント以下の水溶液のpHは、おおむね0~14の範囲にある。市販のpHメーターで計測できるのも、通常は0~14までか、それより狭い範囲である。pHがこの範囲から外れるような液体の場合は、モル濃度による値と活量による値の差が無視できないほど大きくなるので、水素イオン濃度をmol/L単位で表した数値の逆数の常用対数がpHである、と考えるのは不適当である。モル濃度が 1 mol/L を超えるような、濃厚な酸や濃厚アルカリ溶液の酸性・アルカリ性の強さは、酸度関数によって表現するのが一般的である。




目次





  • 1 読み方


  • 2 記号と単位


  • 3 水溶液の液性

    • 3.1 リトマス紙



  • 4 変域


  • 5 水のpH

    • 5.1 純水


    • 5.2 空気に触れた水


    • 5.3 雨水



  • 6 定義


  • 7 pHとpOHの関係

    • 7.1 pHの温度依存性



  • 8 希薄水溶液のpH

    • 8.1 強酸


    • 8.2 弱酸

      • 8.2.1 近似を高めた式


      • 8.2.2 一般式



    • 8.3 強塩基


    • 8.4 弱塩基

      • 8.4.1 一般式




  • 9 極端に希薄な水溶液

    • 9.1 弱酸・弱塩基


    • 9.2 強酸・強塩基



  • 10 濃厚な酸・塩基

    • 10.1 塩酸


    • 10.2 硫酸


    • 10.3 濃厚アルカリ溶液


    • 10.4 平均活量



  • 11 測定法

    • 11.1 pH指示薬(pHインジケーター)


    • 11.2 水素電極


    • 11.3 pH計



  • 12 操作的定義

    • 12.1 IUPACの一次測定


    • 12.2 IUPACの一次標準溶液


    • 12.3 JISのpH標準液



  • 13 計量法におけるピーエッチ


  • 14 由来


  • 15 脚注

    • 15.1 注釈


    • 15.2 出典



  • 16 参考文献


  • 17 関連項目


  • 18 外部リンク




読み方


pHの読みは、「ピーエッチ」、「ピーエイチ」(英語読み[10])、または「ペーハー」(ドイツ語読み[10])などである。pH測定方法を規定する日本の工業規格 (JIS Z 8802) の定める読みは、「ピーエッチ」または「ピーエイチ」である[11]。計量法では「ピーエッチ」と定められている[12][13]



記号と単位


IUPACは、水素イオン指数という名称を使わず、「pH」を物理量の名称としても、物理量の記号としても用いている[14]。また、pHは単位の付かない(単位が1の)無次元量である、としている[14]。それに対して日本の計量法は、「pH」は水素イオン濃度の計量単位「ピーエッチ」の単位記号である、と定めている[15]


本項目では、原則としてIUPACにならって、水素イオン指数をpHと呼び、その記号をpHで表し、その値には単位を付けない。計量単位としての「ピーエッチ」については、「計量法におけるピーエッチ」節で述べる。



水溶液の液性


水溶液の液性は、液体に含まれる水素イオン H+ と水酸化物イオン OH の多寡で決まる。液体中に存在する H+ の数が OH の数よりも多いとき、その水溶液は酸性を示す。逆に、H+ の数が OH の数よりも少ないとき、アルカリ性を示す。H+ の数が OH の数とちょうど同じときは、酸性でもアルカリ性でもなく、中性である。


溶液の酸性がそれほど強くないとき、その溶液を弱酸性溶液という。溶液のアルカリ性がそれほど強くないとき、その溶液を弱アルカリ性溶液という。酸性とアルカリ性の境目のpHは、明確に定まる。それに対して、強酸性と弱酸性、弱酸性と中性、中性と弱アルカリ性、弱アルカリ性と強アルカリ性のそれぞれの境目は、あいまいである。科学的にはこれらを分ける境界線は存在しない。法令などでは、便宜上、適当なpHで線を引いてこれらを分類する。一例として、家庭用品品質表示法における漂白剤・合成洗剤・石けんなどの液性を示す用語とpH範囲を表に示す。















雑貨工業品品質表示規程における漂白剤・洗剤などの液性[16]
液性pHの範囲
酸性pH < 3.0
弱酸性3.0 ≦ pH < 6.0
中性6.0 ≦ pH ≦ 8.0
弱アルカリ性8.0 < pH ≦ 11.0
アルカリ性11.0 < pH

日本の温泉の分類では、液性を示す用語はこの表と同じであるがpH範囲が異なり、中性と弱アルカリ性の範囲が狭くなっている。詳しくは「泉質#液性による分類」を参照のこと。


以下の表は、身近な液体のうちから酸性またはアルカリ性を示すものをいくつか選んで、pHの低い順に並べたものである。この順序は絶対的なものではない。水に溶けている酸・塩基の濃度によりpHは変化するので、濃度によって順序は入れ替わる。また、表の1列目に示したpHの値は、大まかな目安である。











































































身近な液体のpH
pH液体酸性・アルカリ性の強さ酸または塩基
0未満

鉛蓄電池の電解液
とても強い酸性
H2SO4
0
10%硫酸(日本薬局方 希硫酸)とても強い酸性
H2SO4
1
胃液とても強い酸性
HCl
2

レモンの果汁
強い酸性
クエン酸
3
やや強い酸性
酢酸
4

ミョウバン水
やや弱い酸性[Al(H2O)6]3+[注釈 1]
5

コーヒーのブラック(砂糖、ミルク抜き)
弱い酸性数種のカルボン酸
6
雨水わずかに酸性
CO2
7
純水中性
8
海水わずかにアルカリ性
CO2, HCO3
9
ホウ砂水弱いアルカリ性
ホウ砂
10

石鹸水
やや弱いアルカリ性
脂肪酸Na, 脂肪酸K
11
アンモニア水やや強いアルカリ性
NH3
12
石灰水強いアルカリ性
Ca(OH)2
13
家庭用塩素系漂白剤、カビ取り剤とても強いアルカリ性
NaOH
14
4%水酸化ナトリウム水溶液
とても強いアルカリ性
NaOH
14以上

アルカリ乾電池の電解液
とても強いアルカリ性
KOH


リトマス紙




リトマス紙


水溶液の大まかな液性は、リトマス紙で調べることができる。青色のリトマス紙で試験すると、酸性であるかそうでないかが分かる。赤色のリトマス紙で試験すると、アルカリ性であるかそうでないかが分かる。青色と赤色の両方のリトマス紙を用いれば、酸性・中性・アルカリ性のいずれであるかを判定することができる。


リトマス紙では、pHの数値までは分からない。pH試験紙を用いると、pHの数値を知ることができる。pHメーターを用いて計測すると、さらに詳しい数値を知ることができる。



変域


pHの下限や上限は、特には存在しない。鉛蓄電池の電解液のpHは負の値であり、アルカリ乾電池の電解液のpHは14を超える。ただし、酸や塩基のモル濃度が 1 mol/L を超える水溶液のpHは、推測することも計測することも難しい。このような濃厚水溶液の酸性やアルカリ性の強さは、酸度関数によって表現するのが一般的である。


モル濃度が数モル毎リットル以上の濃厚水溶液では、水素イオンのモル濃度 [H+] からpHを計算しても、意味のある数値は得られない。例えば、アメリカ地質調査所の研究者は、ある廃鉱山から採取した試料水のひとつが pH = −3.6 であったと報告している[17][18]。この試料水の水素イオン濃度を 公式 [H+] = 10−pH mol/L からあえて計算すると、4000 mol/L というありえない値が得られる。このような強酸性の液体のpHを [H+] から推定するのは、不可能である。


日本の高等学校の教科書などでは、pHは [H+] の逆数の常用対数として定義されている。そして1気圧・25℃でのpHの値が0~14の範囲で図表が掲げられ、水溶液のpHはほぼその範囲で変化すると記述されている[19]


また水溶液のガラス電極によるpH測定において、信頼性の高い値が得られるのはpHがおよそ1~12の範囲内、イオン強度は0.1以下である。まず濃厚な酸の水溶液をガラス電極により測定する場合、ガラス電極表面の膨潤および陰イオンの吸着などが影響し、酸誤差が生じる。次に濃厚な塩基水溶液の場合はガラス電極表面への陽イオンの吸着などの影響によりアルカリ誤差を生じ、これは陽イオンのイオン半径が小さいほど大きい傾向がある[20]


市販されているpHメーターで測定ができるpH範囲は、通常は、0から14までか、それよりも狭い範囲に限られる。



水のpH



純水


水をどれだけ精製しても、水中から水素イオンを取り除くことはできない。たとえ超純水であっても、水の自己解離のため、1気圧・25℃の水中には水分子5億5千万個につき1個の水素イオンが含まれている。水素イオンのモル濃度で表すと 6996099999999999999♠1.00×107 mol/L であり、この数値の逆数の常用対数がpHであるから、純水のpHは


pH=log10⁡(1.00×107)=7.00displaystyle rm pH=log _10(1.00times 10^7)=7.00displaystyle rm pH=log _10(1.00times 10^7)=7.00

となる。水分子 H2O の自己解離により、純水には水素イオン H+ と同数の水酸化物イオン OH が含まれているので、純水は中性である。


純水のpHは、温度によって変化する。圧力が1気圧のとき、純水のpHが7.00になるのは24℃付近の狭い温度範囲に限られる。温度が0℃のときの純水では pH = 7.47、10℃のとき7.27、20℃のとき7.08、30℃のとき6.92、60℃のとき6.51となる[21]。このpHの温度変化は、水の自己解離の度合いが温度により異なることに起因する。自己解離反応は吸熱反応なので、温度が高いほど解離が進む(ルシャトリエの原理)。60℃の純水に含まれる水素イオンの数は、0℃の純水に含まれる数のおよそ10倍である。



空気に触れた水


空気に触れた純水は酸性を示す。ただし、リトマス紙を赤変するほどではない、ごく弱い酸性である。これは、空気中の二酸化炭素が水中に溶け込むためである。空気に十分な時間接した後の水のpHは25℃で5.6になる。メカニズムは以下の通り[22]


水に溶け込んだ二酸化炭素分子 CO2 の一部は、水分子 H2O と反応して炭酸分子 H2CO3 になる。


CO2+H2O↽−−⇀H2CO3displaystyle ce CO2 + H2O <=> H2CO3displaystyle ce CO2 + H2O <=> H2CO3

生成した炭酸分子のさらに一部は、電離して水素イオン H+ を放出する。


H2CO3↽−−⇀H++HCO3−displaystyle ce H2CO3 <=> H+ + HCO3^-displaystyle ce H2CO3 <=> H+ + HCO3^-

炭酸の電離により放出される水素イオンの量は極めて少ないが、それでも純水に含まれる水素イオンの数十倍の量になる。また質量作用の法則により水の自己解離が抑制されるため、水酸化物イオンの量は純水に含まれる量の数十分の一になる。液体中に存在する H+ の数が OH の数よりも多いので、空気に触れた水は酸性を示す。空気に含まれる二酸化炭素の割合は0.04%でほぼ一定であり、また大気圧もほぼ一定なので、二酸化炭素の分圧はほぼ一定である。さらに温度が一定であれば、CO2 の水への溶解度、H2CO3 が生成する割合、および H2CO3 が電離する割合もまた一定になる。25℃におけるこれらの数値を用いて計算すると、pH = 5.6 となる。



雨水


降水中に二酸化炭素が溶け込むので、大気汚染がなくても雨水のpHは7.0よりも5.6に近い値になり、わずかに酸性を示す。火山活動や生物活動、あるいは化石燃料の燃焼により放出された硫黄酸化物や窒素酸化物が大気に含まれていると、これらが雨水に溶け込むことにより、雨のpHは5.6よりも低くなる。このような雨を酸性雨という[23]



定義


pHは水素イオン H+ の活量 aH+ を用いて次式により定義される[6][5]


pH=−log10⁡aH+=log10⁡1aH+displaystyle rm pH=-log _10a_rm H^+=log _10frac 1a_rm H^+rm pH=-log _10a_rm H^+=log _10frac 1a_rm H^+

例外的な記号である pH の p は演算子 (px ≡ −log10x) と解釈される[24]


水素イオン指数 pH と同様にして、水酸化物イオン指数 pOH は水酸化物イオン OH の活量 aOH を用いて以下の式で定義される。


pOH=−log10⁡aOH−=log10⁡1aOH−displaystyle rm pOH=-log _10a_rm OH^-=log _10frac 1a_rm OH^-rm pOH=-log _10a_rm OH^-=log _10frac 1a_rm OH^-


pHとpOHの関係


質量作用の法則により、温度、圧力が一定であれば、水の自己解離


H2O↽−−⇀H++OH−displaystyle ce H2O <=> H+ + OH^-displaystyle ce H2O <=> H+ + OH^-

の熱力学的平衡定数 aH+·aOH/aH2O は、溶質の種類や濃度によらない一定値になる。H2O の活量 aH2O を1と近似できるような希薄水溶液では



Kw=aH+aOH−mol2/L2displaystyle K_textw=a_mathrm H^+ a_mathrm OH^- ,mathrm mol^2/L^2 displaystyle K_textw=a_mathrm H^+ a_mathrm OH^- ,mathrm mol^2/L^2



で定義される水のイオン積 Kw が、溶質の種類や濃度によらない一定値になる。25℃では Kw = 6986100800000000000♠1.008×10−14 mol2/L2 であるから、これを上式に代入して対数をとると次の関係式が導かれる[注釈 2]


14.00=pH+pOHdisplaystyle 14.00=rm pH+pOHdisplaystyle 14.00=rm pH+pOH

水溶液は、pH < pOH のときに酸性を、pOH < pH のときにアルカリ性をそれぞれ示す。pH = pOH のときは中性である。よって25℃では


  • pH < 7.00 のとき酸性

  • pH = 7.00 のとき中性

  • pH > 7.00 のときアルカリ性

である。水のイオン積 Kw が温度によって変わるので、7.00という数字は温度により変わる。25℃で成り立つ 14.00 = pH + pOH という関係式は、一般には


pKw=pH+pOHdisplaystyle mathrm p K_textw=mathrm pH+pOH displaystyle mathrm p K_textw=mathrm pH+pOH

と表される。ただし pKw = −log10Kw/mol2/L2 である。中性のpHは、pH = pOH のときのpHだから、pKw/2 に等しい。



pHの温度依存性


pKw と 0.1 mol/L の水酸化ナトリウム水溶液のpHが、0℃から60℃の温度範囲でそれぞれどのように変化するかを表に示す。





























温度
pKw[21]
pH[11]

00 ℃
14.9413.8
10 ℃14.5313.4
20 ℃14.1713.1
25 ℃14.0012.9
30 ℃13.8312.7
40 ℃13.5312.4
50 ℃13.2612.2
60 ℃13.0211.9

水酸化ナトリウム水溶液のpHの値は、0℃のときの方が60℃のときよりも1.9高い。これは、中性のpHが温度により異なるためである。温度が低いほど水溶液のアルカリ性が強くなることを示しているわけではない。pKw = pH + pOH の関係を使ってpOHを計算すると、表の温度範囲では1.1の一定値になる。この値は、水酸化ナトリウムのモル濃度 0.1 mol/L から求めた値 pOH = −log10 0.1 = 1.0 にほぼ等しい。



希薄水溶液のpH


適度な濃度(1 mol/L ないし 1 μmol/L、すなわち 100 - 10−6 mol/L)の水溶液のpHは、酸・塩基のモル濃度から計算することができる。必要に応じて、酸解離定数 Ka、塩基解離定数 Kb、水のイオン積 Kw を計算に用いる。



強酸


希薄水溶液中においては、水素イオン活量 aH+ は mol/L 単位で表した水素イオン濃度 [H+] の数値にほぼ等しいと近似される。このとき以下の式でpHを求めることができる。


pH=−log10⁡[H+]mol/L=log10⁡1[H+]/(mol/L)displaystyle mathrm pH =-log _10frac [mathrm H ^+]mathrm mol/L =log _10frac 1[mathrm H ^+]/(mathrm mol/L )mathrm pH=-log _10frac [mathrm H^+]mathrm mol/L=log _10frac 1[mathrm H^+]/(mathrm mol/L)

適度な濃度(1 mol/L ないし 1 μmol/L、すなわち 100 - 10−6 mol/L)の塩酸の水素イオン濃度 [H+] は、塩酸のモル濃度 CHCl に等しい。よって塩酸のpHは、この式から直ちに計算することができる。



CHCl = 0.01 mol/L の塩酸

pH = −log10 0.01 = 2

硝酸や過塩素酸など、他の一塩基酸(分子一個当たり水素イオンを一個放出する酸)の強酸の場合も、酸のモル濃度 CHA が 100 - 10−6 mol/L の範囲にあるなら、塩酸と同様にpHを計算できる。溶質が強酸ではなく弱酸の場合は、後述するように、酸解離平衡を考慮する必要がある。


硫酸は二塩基酸(分子一個当たり水素イオンを二個まで放出できる酸)なので、硫酸の濃度が十分に低いとき (10−3 - 10−6 mol/L) には、水素イオン濃度 [H+] は硫酸の濃度 CH2SO4 の2倍にほぼ等しい。硫酸の濃度が比較的高いとき (100 - 10−1 mol/L) には、2段目の解離がほとんど起こらないので、[H+] は CH2SO4 にほぼ等しい。濃度が中くらい (10−1 - 10−3 mol/L) の硫酸の [H+] を求める計算式は、2段目の解離が部分的に起こるので、少し複雑である。



CH2SO4 = 0.5 mmol/L の硫酸

pH = −log10(2×0.5×10−3) = −log10 10−3 = 3


CH2SO4 = 0.5 mol/L の硫酸

pH = −log10 0.5 = log10 2 = 0.3


弱酸


弱酸溶液のpHは酸解離定数を使って見積もることができる。弱酸は、溶液中では一部しか電離しておらず、平衡状態にある。いま弱酸が


HA↽−−⇀H++A−displaystyle ce HA <=> H+ + A^-displaystyle ce HA <=> H+ + A^-

で電離している時、酸解離定数 Ka


Ka=[H+][A−][HA]displaystyle K_texta=frac [mathrm H ^+][mathrm A ^-][mathrm HA ]displaystyle K_texta=frac [mathrm H ^+][mathrm A ^-][mathrm HA ]

と表すことができる。ここで、酸の初期濃度を c、電離度を α とすると、平衡時には表のような濃度になる。


















HAH+A
初期濃度
c00
平衡後の存在比
1−αα
α
平衡後の濃度
c(1−α)

したがって、酸解離定数 Ka


Ka=(cα)2c(1−α)displaystyle K_texta=frac (calpha )^2cleft(1-alpha right)displaystyle K_texta=frac (calpha )^2cleft(1-alpha right)

となり、水素イオン濃度 [H+] は


[H+]=cα=cKa(1−α)displaystyle [mathrm H ^+]=calpha =sqrt cK_texta(1-alpha )displaystyle [mathrm H ^+]=calpha =sqrt cK_texta(1-alpha )

と表される。


ここで簡単のために、電離度 α が十分に小さいと仮定して、最右辺の 1−α を 1 と置いて [H+] を近似的に求める。このとき弱酸溶液のpHは次式で与えられる。


pH=−log10⁡cαmol/L=−log10⁡cKa(mol/L)2=−12log10⁡cKa(mol/L)2displaystyle mathrm pH =-log _10frac calpha mathrm mol/L =-log _10sqrt frac cK_textamathrm (mol/L)^2 =-frac 12log _10frac cK_textamathrm (mol/L)^2 displaystyle mathrm pH =-log _10frac calpha mathrm mol/L =-log _10sqrt frac cK_textamathrm (mol/L)^2 =-frac 12log _10frac cK_textamathrm (mol/L)^2


c = 0.1 mol/L の酢酸


酢酸の酸解離定数 Ka6998173780082874937♠10−4.76 mol/L である。

pH = 1/2(4.76 − log10 0.1) = 2.9


c = 0.1 mmol/L の酢酸


pH = 1/2(4.76 − log10(6996100000000000000♠0.1×103)) = 4.4


c = 0.1 mol/L のスルファミン酸


スルファミン酸の酸解離定数 Ka7002102329299228075♠10−0.99 mol/L である。

pH = 1/2(0.99 − log10 0.1) = 1.0

この計算から得られたpHは、[H+] = c であること、すなわち電離度が1であることを意味しているので、電離度 α が十分に小さいとする近似は破綻している。


近似を高めた式


上の簡単な式は、電離度 α が大きくなるほど近似が悪くなる。二次方程式の解の公式を使うと、弱酸溶液の水素イオン濃度 [H+] をより正確に計算できる式が得られる。



[H+]=cα=12(Ka2+4cKa−Ka)displaystyle [mathrm H ^+]=calpha =frac 12left(sqrt K_texta^2+4cK_texta-K_textaright)displaystyle [mathrm H ^+]=calpha =frac 12left(sqrt K_texta^2+4cK_texta-K_textaright)



この式から求めた [H+] を使うと、より正確なpHを計算することができる。



c = 0.1 mol/L の酢酸

[H+] = 0.0013 mol/L, α = [H+]/c = 1.3%

pH = 2.9

電離度が1%程度のときは、簡単な近似式 [H+] = cKa から求めたpHが十分に正確であることが分かる。


c = 0.1 mmol/L の酢酸

[H+] = 0.034 mmol/L, α = [H+]/c = 3.4%

pH = 4.5

濃度が低くなると、電離度が大きくなるので簡単な近似式の精度は悪くなる。


c = 0.1 mol/L のスルファミン酸

[H+] = 0.062 mol/L, α = [H+]/c = 62%

pH = 1.2

電離度が大きい場合でも、pHを計算することができる。


c = 0.01 mmol/L のフェノール


フェノールの酸解離定数 Ka は、ほぼ 6993100000000000000♠10−10 mol/L である。簡単な式で計算すると

pH = 1/2(10 − log106995100000000000000♠0.01×103) = 7.5

となり、pHが7を越える。電離度が小さいので、近似を高めた式でも同じ計算結果になる。

この計算結果は、弱酸の水溶液を水で薄めていくとアルカリ性を示すようになる、ということを意味するので、明らかにおかしい。


一般式


フェノールのpH計算がおかしな結果になったのは、水の自己解離を無視したためである。水の自己解離を考慮すると、弱酸の水溶液の [H+] と c の関係は一般に次式で表される[25]



c=1Ka([H+]2+Ka[H+]−KaKw[H+]−Kw)displaystyle c=frac 1K_textaleft([mathrm H ^+]^2+K_texta[mathrm H ^+]-frac K_textaK_textw[mathrm H ^+]-K_textwright)displaystyle c=frac 1K_textaleft([mathrm H ^+]^2+K_texta[mathrm H ^+]-frac K_textaK_textw[mathrm H ^+]-K_textwright)




c = 0.01 mmol/L のフェノール

一般式で計算すると25℃で pH = 7.0 となり、pHは7を越えない。

酸解離定数が小さくなるほど、水の自己解離を考慮しなければならない濃度は高くなる。



強塩基


希薄水溶液中においては、水酸化物イオン活量 aOH も mol/L 単位で表した水酸化物イオン濃度 [OH] の数値にほぼ等しいと近似できる。よって水酸化物イオン指数は以下の式で近似することができる。


pOH=−log10⁡[OH−]mol/L=log10⁡1[OH−]/(mol/L)displaystyle mathrm pOH =-log _10frac [mathrm OH ^-]mathrm mol/L =log _10frac 1[mathrm OH ^-]/(mathrm mol/L )mathrm pOH=-log _10frac [mathrm OH^-]mathrm mol/L=log _10frac 1[mathrm OH^-]/(mathrm mol/L)

適度な濃度(1 mol/L ないし 1 μmol/L、すなわち 100 - 10−6 mol/L)の水酸化ナトリウム水溶液の水酸化物イオン濃度 [OH] は、水酸化ナトリウム水溶液のモル濃度 CNaOH に等しい。よって水酸化ナトリウム水溶液のpOHは、この式から直ちに計算することができる。25℃におけるアルカリ性の水溶液のpHは、関係式 pH + pOH = 14.00 から計算できる。



CNaOH = 0.01 mol/L の水酸化ナトリウム水溶液

pOH = −log10 0.01 = 2

pH = 14.00 − 2 = 12

水酸化カリウムなどの他のアルカリ金属の水酸化物の場合も、アルカリのモル濃度 CMOH が 100 - 10−6 mol/L の範囲にあるなら、水酸化ナトリウム水溶液と同様にpOHを計算できる。溶質が強塩基ではなく弱塩基の場合は、後述するように、塩基解離平衡や加水分解を考慮する必要がある。


第2族元素(アルカリ土類金属)の水酸化物は、金属イオン1モルにつき水酸化物イオンを2モル含むイオン結晶である。これらの結晶が水に溶けるとき、濃度が十分に低ければ水酸化物イオン濃度 [OH] は水酸化物 M(OH)2 (M = Mg, Ca, Ba など) の濃度 CM(OH)2 の2倍に等しい。水酸化物の濃度が高くなると、金属イオンの加水分解


M2++OH−↽−−⇀M(OH)+displaystyle ce M^2+ + OH^- <=> M(OH)+displaystyle ce M^2+ + OH^- <=> M(OH)+

が起こるので、[OH] は 2CM(OH)2 よりも小さくなる。しかしながら、第2族元素の金属イオンはアルカリ金属イオンに次いで加水分解しにくいイオンであり、また第2族元素の水酸化物の水への溶解度は比較的小さいので、簡単のため、[OH] = 2CM(OH)2 と置いてpOHを計算することが多い。



水酸化カルシウムの飽和水溶液

25℃における飽和水溶液のモル濃度は 7001203000000000000♠20.3×103 mol/L である[26]

pOH = −log10(2×20.3×10−3) = 1.4

pH = 14.00 − 1.4 = 12.6


水酸化マグネシウムの飽和水溶液

25℃における飽和水溶液のモル濃度は 6999166000000000000♠16.6×105 mol/L である[27]

pOH = −log10(2×16.6×10−5) = 3.5

pH = 14.00 − 3.5 = 10.5

水酸化マグネシウムは強塩基であるが、水に対する溶解度が低いため、その水溶液は弱アルカリ性になる。



弱塩基


弱塩基水溶液のpHは塩基解離定数を使って見積もることができる。弱塩基は、部分的に電離して水酸化物イオン OH を放出するタイプのものよりも、溶媒の水分子 H2O から水素イオン H+ を引き抜くことで水酸化物イオン OH を生成するタイプの方が多い。


B+H2O↽−−⇀HB++OH−displaystyle ce B + H2O <=> HB+ + OH^-displaystyle ce B + H2O <=> HB+ + OH^-

このときの塩基解離定数 Kb


Kb=[OH−][HB+][B]displaystyle K_textb=frac [mathrm OH^- ][mathrm HB^+ ][mathrm B ]displaystyle K_textb=frac [mathrm OH^- ][mathrm HB^+ ][mathrm B ]

と表すことができる。弱酸の場合と同様に考えると、弱塩基の希薄溶液の水酸化物イオン濃度 [OH] は次式で与えられる。



[OH−]=12(Kb2+4CBKb−Kb)displaystyle [mathrm OH^- ]=frac 12left(sqrt K_textb^2+4C_textBK_textb-K_textbright)displaystyle [mathrm OH^- ]=frac 12left(sqrt K_textb^2+4C_textBK_textb-K_textbright)



ここで CB は弱塩基の初期濃度である。CB が塩基解離定数 Kb よりも十分に大きいときは



[OH−]=CBKbdisplaystyle [mathrm OH^- ]=sqrt C_textBK_textbdisplaystyle [mathrm OH^- ]=sqrt C_textBK_textb



と近似できるので、25℃におけるpHは次式で与えられる。



pH=14.00+12log10⁡CBKb(mol/L)2displaystyle mathrm pH =14.00+frac 12log _10frac C_textBK_textbmathrm (mol/L)^2 displaystyle mathrm pH =14.00+frac 12log _10frac C_textBK_textbmathrm (mol/L)^2




CB = 0.1 mol/L のアンモニア水


アンモニアの塩基解離定数 Kb6998177827941003892♠10−4.75 mol/L である。

pH = 14.00 + 1/2(−4.75 + log10 0.1) = 11.1


CNa2CO3 = 0.1 mol/L の炭酸ナトリウム水溶液


炭酸ナトリウム Na2CO3 はイオン結晶であり、水に溶けるとナトリウムイオンと炭酸イオンに完全に電離する。水に溶けた炭酸イオン CO32− が塩基として働くので、塩基の初期濃度 CBCNa2CO3 に等しい。炭酸イオン CO32− の塩基解離定数 Kb6999213796208950223♠10−3.67 mol/L である。

pH = 14.00 + 1/2(−3.67 + log10 0.1) = 11.7

炭酸イオンは弱塩基であるが、炭酸ナトリウムおよび炭酸カリウムの水溶液は強いアルカリ性を示す。アンモニアも弱塩基であるが、モル濃度が 0.1 mol/L、すなわち質量パーセント濃度が0.2%程度の比較的薄いアンモニア水でも、そのpHは11を超える。これらの例は、強塩基 Mg(OH)2 の水溶液が弱アルカリ性を示すのと対照的である。



一般式


弱塩基の水溶液の [H+] と CB の関係は、一般に次式で表される[28]



CB=1Kb(Kw2[H+]2+KbKw[H+]−Kb[H+]−Kw)displaystyle C_textB=frac 1K_textbleft(frac K_textw^2[mathrm H ^+]^2+frac K_textbK_textw[mathrm H ^+]-K_textb[mathrm H ^+]-K_textwright)displaystyle C_textB=frac 1K_textbleft(frac K_textw^2[mathrm H ^+]^2+frac K_textbK_textw[mathrm H ^+]-K_textb[mathrm H ^+]-K_textwright)




極端に希薄な水溶液


酸の濃度が極端に低くなると、水素イオン濃度 [H+] は酸のモル濃度 CHA よりも大きくなる。これは、水の自己解離が起こっているためである。酸の水溶液をどれだけ純水で薄めても、25℃ではpHが7を超えることはない。同様に、塩基の濃度が極端に低くなると、水酸化物イオン濃度 [OH] は塩基のモル濃度 CB よりも大きくなる。塩基の水溶液をどれだけ純水で薄めても25℃のpOHは7を超えないしpHが7を下回ることもない。



弱酸・弱塩基


弱酸と弱塩基の場合は、それぞれ前の節で示した一般式を用いてpHを計算することができる。



強酸・強塩基


強酸の水溶液の [H+] と CHA の関係は、一般に次式で表される。



[H+]=12(CHA2+4Kw+CHA)displaystyle [mathrm H ^+]=frac 12left(sqrt C_mathrm HA ^2+4K_textw+C_mathrm HA right)displaystyle [mathrm H ^+]=frac 12left(sqrt C_mathrm HA ^2+4K_textw+C_mathrm HA right)



ただし Kw は水のイオン積であり、25℃では Kw = 6986100800000000000♠1.008×10−14 mol2/L2 である。数値を入れて計算すると



CHA > 10−6 mol/L のとき

[H+] = CHA


CHA < 10−8 mol/L のとき

[H+] = Kw

となることが分かる。つまり、溶質が強酸の場合は、濃度が極端に低くない限り水素イオンの濃度に関する式に酸の濃度を直接代入してよいことと、酸の濃度が極端に低くなるとpHが7になることが確認できる。10−6 mol/L > CHA > 10−8 mol/L のときは、上の関係式から [H+] を求めてpHに換算すると6ないし7になる。


強塩基の水溶液の [OH] と CMOH の関係は、一般に次式で表される。



[OH−]=12(CMOH2+4Kw+CMOH)displaystyle [mathrm OH^- ]=frac 12left(sqrt C_mathrm MOH ^2+4K_textw+C_mathrm MOH right)displaystyle [mathrm OH^- ]=frac 12left(sqrt C_mathrm MOH ^2+4K_textw+C_mathrm MOH right)




濃厚な酸・塩基


酸の濃度が 1 mol/L よりも高くなると、水素イオン活量 aH+ を水素イオン濃度 [H+] で置き換える近似が悪くなる。濃塩酸、濃硝酸、濃硫酸などの強酸性液体のpHを [H+] から計算で求めるのは、無意味である。塩基の場合も同様で、濃厚アルカリ溶液のpHやpOHを [H+] や [OH] から計算で求めるのは、無意味である。pHはもともと、酸・塩基の濃度が 1 mol/L よりも低い水溶液の酸性・アルカリ性の度合いを示すための指標として考案された[4]。濃厚な酸や濃厚アルカリ溶液の酸性・アルカリ性の強さは、酸度関数によって表現するのが一般的である。



塩酸


塩酸のpHが、2000年代に複数の研究グループにより測定されている。報告された 1 mol/L 塩酸のpHはいずれも −0.1程度であり、互いによく一致している[29]。1 - 6 mol/L 塩酸のpHを酸度関数 H0 とともに表に示す。






































塩酸のpHと酸度関数 H0 (25 ℃)[30]
モル濃度水素電極ガラス電極モデル計算
H0
7003100000000000000♠1 mol/L−0.16−0.10−0.16−0.21
7003200000000000000♠2 mol/L−0.63−0.53−0.64−0.67
7003300000000000000♠3 mol/L−1.00−0.93−1.03−1.05
7003400000000000000♠4 mol/L−1.33−1.22−1.38−1.41
7003500000000000000♠5 mol/L−1.53−1.44−1.71−1.76
7003600000000000000♠6 mol/L−1.67−1.60−2.05−2.12

表の2列目は水素電極を用いた測定値、3列目はガラス電極を用いた測定値、4列目は平均活量係数 γ± などの実測値を用いたモデル計算による値で、最後の列が酸度関数 H0 の文献値である。酸のモル濃度が 1 mol/L を超えると、pHが急速に低下することが表から分かる。塩酸では、3 mol/L でpHが −1に達する。



硫酸


ピッツァー式(英語版)と呼ばれる複雑な実験式に基づいて、25℃における硫酸のpHが計算されている[31]


























































硫酸のpH (25 ℃)
比重質量モル濃度/mol/kgpH[31]−log10mH+/mol/kg
−log10[H+]/mol/L
1.000.1460.860.840.84
1.040.7340.090.130.15
1.091.497−0.38−0.18−0.15
1.132.319−0.79−0.37−0.33
1.152.918−1.07−0.47−0.42
1.183.657−1.41−0.56−0.50
1.224.485−1.78−0.65−0.58
1.265.413−2.19−0.73−0.65
1.337.622−3.13−0.88−0.76
1.389.850−4.09−0.99−0.84

表の2列目はモル濃度ではなく質量モル濃度である。比較のために、水素イオンの質量モル濃度 mH+ の逆数の対数を4列目に、モル濃度 [H+] の逆数の対数を5列目に示した。十分に希薄であれば、質量モル濃度から計算したpHはモル濃度から計算したpHに等しい。−log10mH+/mol/kg は、硫酸を H+ と HSO4 を溶質とする理想希薄溶液とみなしたときのpHに相当する。硫酸の質量モル濃度が 1 mol/kg を超えると硫酸のpHは急速に低下し、理想希薄溶液のpHとのずれは無視できないほど大きくなる。表から、自動車用鉛蓄電池の電解液(比重1.28の希硫酸)のpHが −2よりも低い負の値となることが分かる。また、このような強い酸性を示す硫酸のpHは、水素イオンの質量モル濃度やモル濃度の逆数の対数とはみなせないことも分かる。



濃厚アルカリ溶液


水酸化カリウム水溶液と水酸化ナトリウム水溶液のH関数を表に示す。































水酸化カリウム水溶液と水酸化ナトリウム水溶液のH関数 (25 ℃)[32]
モル濃度14.00 + log10[OH]/mol/L
KOH 水溶液の H

NaOH 水溶液の H
7002100000000000000♠0.1 mol/L13.0013.0012.99
7003100000000000000♠1 mol/L14.0014.1114.02
7003200000000000000♠2 mol/L14.3014.5114.37
7003500000000000000♠5 mol/L14.7015.4415.20
7004100000000000000♠10 mol/L15.0016.9016.20
7004150000000000000♠15 mol/L15.1818.2317.10

モル濃度が 1 mol/L より低い水溶液では、これらのH関数は [OH] から計算したpHに一致する。モル濃度が 1 mol/L を超えると、pHの計算値とH関数のずれは急速に大きくなる。また、同じモル濃度の濃厚溶液では、水酸化カリウム水溶液の方が水酸化ナトリウム水溶液よりも強いアルカリ性を示す。



平均活量


単独イオンの活量 (single-ion activity) は、熱力学の枠内では測定できないことが知られている[33]。水素イオン活量 aH+ や水酸化物イオン活量 aOH も例外ではない。熱力学的に測定可能なのは、陽イオンと陰イオンの活量の積である。例えば塩酸であれば水素イオン活量と塩化物イオン活量の積 aH+aCl が測定されている。水酸化カリウム水溶液では aK+aOH が測定されている。これらの1:1電解質のイオン活量の積 a+a から、平均活量 a± が次式で定義される。


a±=a+a−displaystyle a_pm =sqrt a_+a_-displaystyle a_pm =sqrt a_+a_-

もし、1:1電解質の陽イオンと陰イオンの活量が等しいと仮定するなら a+ = a = a± となるので、平均活量から単独イオンの活量を推定できる。この仮定に基づいて、25℃における水酸化カリウムのpHが推定されている[34]。この推算によると質量モル濃度 1 mol/kg のときのpHは13.89、15 mol/kg のときは17.14である。質量モル濃度からpHを計算すると 14.00 + log10 15 = 15.18 となることから、濃厚KOH水溶液では質量モル濃度(またはモル濃度)から計算したpHと平均活量から計算したpHが大きく異なることが分かる。



測定法


以下の方法によりpHを測定できる。



pH指示薬(pHインジケーター)





pHインジケーター。普及しているテープ状の紙のタイプ。テープを引き出し、ちぎり、調べたい溶液にひたして変化後の色と、ケース上の環の各色を見比べ、一致する色をみつけ、その色の中に書かれている数値をpHとして読み取る。


液タイプとテープ(紙帯)タイプがある。


液タイプ

必要に応じ、試験管などに分取した液に指示薬を加え、判定する。通常、指示薬の一覧にあるような色素が用いられ、市販されており、それぞれ色が異なる。複数試すことで、液のpHがおおむねいくつかを判断することができる。

pH試験紙

一般的には指示薬を紙(紙の帯)に染み込ませ乾燥させたものが販売されている。調べたい液にインジケーターの紙を浸す。すると液の水素イオン濃度に応じて色が変化し、変化後の色と参照表上の様々な色を見比べてほぼ一致する色をみつけ、その色に対応する数値を読み取る。一般的には一種類の紙で済ますが、なかには複数(2 - 4種類程度)の小さな試験紙によるものもあり、このタイプではそれぞれの色の組み合わせによりpHを読み取ることができる仕組みになっている。


水素電極


水素電極(白金黒水素電極など)は白金板の表面が微粒子の白金黒で覆われたもので、 圧力 pH2p° = 105Pa の純粋な水素ガスを通じながら使用する。


その電極反応は以下の通り。



2H+(aq)+2e−= H2(gas)displaystyle ce 2H+(aq)+2e^-= H2(gas)displaystyle ce 2H+(aq)+2e^-= H2(gas),E∘=0Vdisplaystyle ,quad E^circ =0,textVdisplaystyle ,quad E^circ =0,textV

ネルンストの式により水素イオン活量 aH+ と電極電位 E との間には以下の関係が成立する。


E=E∘+RT2Fln⁡aH+2pH2/p∘displaystyle E=E^circ +frac RT2Fln frac a_mathrm H^+ ^2p_mathrm H_2 /p^circ displaystyle E=E^circ +frac RT2Fln frac a_mathrm H^+ ^2p_mathrm H_2 /p^circ

pHと電極電位には直線関係がある。pH2 = 105 Pa であれば、25℃のとき


pH=−E59.16mVdisplaystyle mathrm pH =frac -E59.16,mathrm mV displaystyle mathrm pH =frac -E59.16,mathrm mV

である。


参照電極(照合電極[注釈 3])としては銀-塩化銀電極あるいはカロメル電極などが用いられ、それらと水素電極との電位差をpHに換算する。



pH計



pHメーター(pH計)には、pH電極(ガラス電極など)が接続され電気的に測定することができる。


電極内部に水素イオン濃度が一定である緩衝溶液が封入され、ガラス膜の内部および測定溶液に接触する外部にそれぞれ水素イオンが吸着し電位差を生ずる。ガラス電極と参照電極との電位差をpHに換算する。


内部電極 | 内部液 | ガラス膜 | 試料溶液 | 外部照合電極


操作的定義


pHは前述したように水素イオンの活量で定義されるが、電気化学的に測定されるものは陽イオンおよび陰イオンの活量の積であり、単独イオンの活量を直接測定することは熱力学の枠内では不可能である[33]。このため単独イオンの活量で定義される厳密な意味でのpHは測定が不可能であることになる。そこで実験的にpHを測定するためには、デバイ-ヒュッケルの式などから推定される活量係数に基づく操作的な定義が必要となる。


pHの「測定操作を基礎とする定義」は、大まかには


試料溶液に入れた2本の電極の間の測定電位を、pH標準溶液に入れた同じ2本の電極の間の測定電位と比較してえられる値

と表現することができる[35]。この定義は、セーレンセンがpHの概念を提唱したときから現在まで、大筋では変わっていない。時代や国によって変わるのは


  1. 測定電位(起電力)からどのようにpHを求めるのか

  2. えられたpHの物理化学的な意味は何か

  3. 標準溶液のpHをどのように決めるのか

の三つである。


起電力とpHの関係

pHの操作的定義のうち、最もシンプルな定義は、ネルンストの式に基づくものである[5]
pH(X)=pH(S)+E(S)−E(X)(RT/F)ln⁡10displaystyle mathrm pH(X) =mathrm pH(S) +frac E(mathrm S )-E(mathrm X )(RT/F)ln 10displaystyle mathrm pH(X) =mathrm pH(S) +frac E(mathrm S )-E(mathrm X )(RT/F)ln 10

ここで、pH(X) と pH(S) はそれぞれ試料溶液 X と標準溶液 S のpHであり、E(X) と E(S) は水素電極(と適当な参照電極)を用いたときのそれぞれの溶液の起電力である。ガラス電極(と適当な参照電極)で起電力を測定するときは、ネルンスト応答からずれるので、pHの異なる標準溶液を二つ使う[36]
pH(X)=pH(S1)+E(S1)−E(X)E(S1)−E(S2)(pH(S2)−pH(S1))displaystyle mathrm pH(X) =mathrm pH(S_1) +frac E(mathrm S _1)-E(mathrm X )E(mathrm S _1)-E(mathrm S _2)left(mathrm pH(S_2) -mathrm pH(S_1) right)displaystyle mathrm pH(X) =mathrm pH(S_1) +frac E(mathrm S _1)-E(mathrm X )E(mathrm S _1)-E(mathrm S _2)left(mathrm pH(S_2) -mathrm pH(S_1) right)

このとき、pH(X) より低いpHを持つ標準溶液 S1 と、より高いpHを持つ標準溶液 S2 を使う。例えば弱酸性の試料溶液のpHを測定する際には、フタル酸塩標準溶液と中性リン酸標準溶液を標準溶液として使う。試料溶液が弱アルカリ性の際には、中性リン酸標準溶液とホウ酸塩標準溶液を使う。

pHの物理化学的な意味

セーレンセンははじめ、水素電極を用いたときの起電力が水素イオン濃度 [H+] の対数に比例するものとした(1909年)。
pH=−log10⁡[H+]mol/Ldisplaystyle mathrm pH =-log _10frac [mathrm H ^+]mathrm mol/L mathrm pH=-log _10frac [mathrm H^+]mathrm mol/L

その後、考えを改め、起電力が水素イオン活量 aH+ の対数に比例するものとした(1924年)。
pH=−log10⁡aH+displaystyle mathrm pH =-log _10a_mathrm H ^+displaystyle mathrm pH =-log _10a_mathrm H ^+


IUPACは、操作的に定義されたpHは簡単な解釈ができない、としている。ただし十分希薄な水溶液(pHが2から12の間にあって、かつイオン強度が0.1より小さい水溶液)に限れば、pHを水素イオン活量の逆数の対数とみなせる、ともしている[36]

標準溶液のpH

標準溶液のpHを定める方法のひとつは、ある溶液のpHを定義値として固定することである。例えばJISの旧規格では、15℃における 0.05 mol/L のフタル酸水素カリウム水溶液のpHを4と定義していた[20]。IUPACが現在推奨している方法はこれとは異なる。2002年のIUPAC勧告では、標準溶液のpHの一次測定法を定義している[37]。この勧告によると、一次標準溶液のpHは定義値ではなく一次測定から求められる値であり、不確かさを持つ値になる。


IUPACの一次測定


IUPACの定めるpHの一次測定では、液間電位差(英語版)のないハーンド電池 (Harned cell) の起電力 E が測定される[6]


Pt(s) | H2(g) | Buffer S, Cl(aq) | AgCl(s) | Ag(s)

ここで、電解液は標準溶液 S に NaCl または KCl を添加したものである。また水素電極の水素ガスの圧力は1気圧とする。ネルンストの式を変形すると次式が得られる。


−log10⁡aH+γCl−=E−E∘(RT/F)ln⁡10+log10⁡mCl−mol/kgdisplaystyle -log _10a_mathrm H ^+gamma _mathrm Cl ^-=frac E-E^circ (RT/F)ln 10+log _10frac m_mathrm Cl ^-textmol/kgdisplaystyle -log _10a_mathrm H ^+gamma _mathrm Cl ^-=frac E-E^circ (RT/F)ln 10+log _10frac m_mathrm Cl ^-textmol/kg

ただし γClmCl はそれぞれ塩化物イオンの活量係数と質量モル濃度であり、E° は銀-塩化銀電極の標準電極電位である。この式の右辺に現れる物理量は全て熱力学的に測定できるので、左辺の−log10aH+γCl もまた、熱力学的に測定できる量である。この量は、添加した塩化物イオンの質量モル濃度に依存する量であるが、添加量を変えて測定を行い、測定値を mCl → 0 に外挿すると、塩化物の添加量に依らない標準溶液 S に固有の値が得られる。標準溶液 S のpHは次式で与えられる。


pH(S)=limmCl−→0(−log10⁡aH+γCl−)+log10⁡γCl−displaystyle mathrm pH(S) =lim _m_mathrm Cl ^-to 0left(-log _10a_mathrm H ^+gamma _mathrm Cl ^-right)+log _10gamma _mathrm Cl ^-displaystyle mathrm pH(S) =lim _m_mathrm Cl ^-to 0left(-log _10a_mathrm H ^+gamma _mathrm Cl ^-right)+log _10gamma _mathrm Cl ^-

右辺第2項は、デバイ・ヒュッケル理論に基づいたベイツ–グッゲンハイムの規約を使って、標準溶液 S のイオン強度 I から計算される。


log10⁡γCl−=−AI1+1.5Idisplaystyle log _10gamma _mathrm Cl ^-=-frac Asqrt I1+1.5sqrt Idisplaystyle log _10gamma _mathrm Cl ^-=-frac Asqrt I1+1.5sqrt I

ここで A は、温度と水の誘電率には依存するが、溶質の種類や量には依らない係数である[38]


一次測定により求められるpHの不確かさは、一次標準溶液では 0.003 程度である[6]



IUPACの一次標準溶液


IUPACの一次標準溶液を以下に示す。一次標準物質には緩衝溶液としての作用が強く、再結晶などにより純品が得やすいものが選定されている。



  • 酒石酸塩標準溶液:25℃における酒石酸水素カリウムの飽和水溶液


  • クエン酸塩標準溶液:クエン酸二水素カリウム 0.05 mol を水 1 kg に溶解


  • フタル酸塩標準溶液:フタル酸水素カリウム 0.05 mol を水 1 kg に溶解

  • 中性リン酸塩標準溶液:リン酸二水素カリウム 0.025 mol およびリン酸水素二ナトリウム 0.025 mol を水 1 kg に溶解

  • リン酸塩標準溶液:リン酸二水素カリウム 0.00869 mol およびリン酸水素二ナトリウム 0.03043 mol を水 1 kg に溶解


  • ホウ酸塩標準溶液:四ホウ酸ナトリウム十水和物(ホウ砂)0.01 mol を二酸化炭素を含まない水 1 kg に溶解


  • 炭酸塩標準溶液:炭酸水素ナトリウム 0.025 mol および炭酸ナトリウム 0.025 mol を二酸化炭素を含まない水 1 kg に溶解


































































































一次標準溶液のpHの典型値[注釈 4] (IUPAC 2002)
温度酒石酸塩クエン酸塩フタル酸塩中性リン酸塩リン酸塩ホウ酸塩炭酸塩
0 ℃3.8634.0006.9847.5349.46410.317
5 ℃3.8403.9986.9517.5009.39510.245
10 ℃3.8203.9976.9237.4729.33210.179
15 ℃3.8023.9986.9007.4489.27610.118
20 ℃3.7884.0006.8817.4299.22510.062
25 ℃3.5573.7764.0056.8657.4139.18010.012
30 ℃3.5523.7664.0116.8537.4009.1399.966
35 ℃3.5493.7594.0186.8447.3899.1029.926
37 ℃3.5483.7564.0226.8417.3869.0889.910
40 ℃3.5473.7544.0276.8387.3809.0689.889
50 ℃3.5493.7494.0506.8337.3679.0119.828


JISのpH標準液


JISのpH標準液は以下の六つである。これらの標準液の調製法とpHの典型値は、JIS Z 8802 に記載されている[11]



  • しゅう酸塩pH標準液:0.05 mol/kg 二シュウ酸三水素カリウム水溶液

  • フタル酸塩pH標準液:IUPACと同じ

  • 中性りん酸塩pH標準液:IUPACと同じ

  • りん酸塩pH標準液:IUPACとほぼ同じ

  • ほう酸塩pH標準液:IUPACと同じ

  • 炭酸塩pH標準液:IUPACと同じ

試料測定前にこれらのpH標準液を用いてpHメーターの校正を行う。校正は中性りん酸塩標準液でゼロ点調整した後、試料溶液が酸性であればフタル酸塩標準液またはしゅう酸塩標準液で、アルカリ性であればりん酸塩標準液、ほう酸塩標準液、炭酸塩標準液のいずれかを用いて感度調整(スパン校正)を行う。校正点が3点以上あってもよい。試料溶液のpHが11を超える場合は、飽和水酸化カルシウム水溶液または 0.1 mol/L 水酸化ナトリウム水溶液を、調製pH標準液に準じた溶液として校正に用いることができる[11]



計量法におけるピーエッチ


計量法におけるピーエッチは、濃度の計量単位であり、“モル毎リットルで表した水素イオン濃度の値に、活動度係数を乗じた値の逆数の常用対数”である[39][40]。計量法では、pHの読みが「ピーエッチ」という位置付けではなく、「ピーエッチ」そのものが計量単位であり、ピーエッチの単位記号が「pH」である[41]。計量法・計量単位令・計量単位規則では、「水素イオン指数」と「水素イオン濃度指数」の2語は用いられていない。


「pH」は、単位以外のものを表すのにも用いられる。例として、特定計量器であるガラス電極式水素イオン濃度計を定める工業規格 (JIS B 7960) における記号pHの使用法を示す[42]


  1. pH単位で表した水素イオン濃度(物象の状態の量)を、記号 pH で表してもよい。「溶液の pH に比例する起電力を…(第1部 p. 1)」

  2. pH単位で表した水素イオン濃度の値を、pH 値と呼ぶ。「pH7.000, pH6.86 又は pH6.865 の pH 値に対する理論起電力を用いて…(第2部 p. 2)」

  3. pH単位で表した水素イオン濃度の値が 6.86 であれば、これを pH6.86 と書く。記号は数値の左側に空白を入れずに書く。「pH7.000, pH6.86 又は pH6.865 の pH 値に対する理論起電力を用いて…(第2部 p. 2)」

  4. pH単位で表した水素イオン濃度の差は、数値の右側に空白を入れて単位記号を書く。「1 pH 当たりの理論起電力(第1部 p. 2)」「指示計の目量は,0.02 pH 以下とする(第2部 p. 3)」

  5. 数式中の pH 値は、記号 pH で表す。イタリック体にはしない。「E=59.16×(7.000−pH) (mV)(第2部 p. 4)」

JIS B 7960 には、ピーエッチ (pH) を定義する文言はない。この規格が引用している JIS K 0211 分析化学用語(基礎部門)と JIS K 0213 分析化学用語(電気化学部門)では、pHを“水素イオンの活量の逆数の常用対数”と定義している。なお、これらの規格で用語として定義されているのは「ピーエッチ」ではなく、「pH」である。また、「ぴーえっち」の他の読みとして「ぴーえぃち」と「ぴーえいち」が挙げられている[7][43]


“モル毎リットルで表した水素イオン濃度の値に、活動度係数を乗じた値の逆数の常用対数”と“水素イオンの活量の逆数の常用対数”は同じものである。ただし、これは概念上の定義で実測できない値であるので、実際のpH測定に当たっては JIS Z 8802 に規定されている操作的定義を用いる[7][43]



由来


pHの由来には次のように諸説ある。




















言語名語源とされる語句出典
英語

potential of hydrogen
『新和英中辞典』[44]、『ジーニアス英和辞典』[45]
フランス語

pouvoir Hydrogène
『新英和中辞典』[46]
フランス語

potentiel d'Hydrogène
『ディコ仏語辞典』[47]
ドイツ語

Potenz H
『オックスフォード英英辞典』[48]
ラテン語

pondus hydrogenii


脚注



注釈


[ヘルプ]

  1. ^ [Al(H2O)6]3+↽−−⇀H++[Al(OH)(H2O)5]2+displaystyle ce [Al(H2O)6]^3+ <=> H^+ + [Al(OH)(H2O)5]^2+displaystyle ce [Al(H2O)6]^3+ <=> H^+ + [Al(OH)(H2O)5]^2+


  2. ^ H2O の活量が1から大きくずれるような濃厚水溶液では 14.00 = pH + pOH + log10aH2O となる。


  3. ^ 英語: reference electrode


  4. ^ これらのpHの値は一次測定により得られる典型値 (typical values) であって、定義値ではない。


出典


[ヘルプ]


  1. ^ Sørensen (1909), p. 159.


  2. ^ 『理化学辞典』【水素イオン指数】。


  3. ^ 『世界大百科事典』【pH】。

  4. ^ ab『化学の原典』 p. 69.

  5. ^ abcCovington et al. (1985), p. 534.

  6. ^ abcdグリーンブック (2009) pp. 90-91.

  7. ^ abcJIS K 0211 分析化学用語(基礎部門)用語番号4345(2013年改正)。


  8. ^ 左巻 (2011), pp. 192-193.


  9. ^ 左巻 (2011), pp. 195-196.

  10. ^ ab水町 (2003) p. 20.

  11. ^ abcdJIS Z 8802 pH測定方法(2011年改正).


  12. ^ 計量法 別表第三。


  13. ^ 計量単位令 別表第三。

  14. ^ abグリーンブック (2009) p. 84.


  15. ^ 計量法 別表第三、計量単位令 別表第三、計量単位規則 別表第二。


  16. ^ 雑貨工業品品質表示規程 消費者庁


  17. ^ Lim (2006), p. 1465.


  18. ^ Nordstrom & Alpers (1999).


  19. ^ 渡辺 正ほか『新版 化学I』大日本図書

  20. ^ ab吉村 (1968).

  21. ^ ab大阪教育大学附属高等学校天王寺校舎「第20章 酸・塩基の強さ」の水のイオン積より算出。


  22. ^ 赤木 (2005) p. 197.


  23. ^ 赤木 (2005) p. 245.


  24. ^ Bates & Guggenheim (1960), p. 163.


  25. ^ 田中 (1971) p.76.


  26. ^ 『化学便覧』 表 9.32.


  27. ^ 『化学便覧』 表 9.33.


  28. ^ 田中 (1971) p.79.


  29. ^ 垣内、山本 (2016), p. 186.


  30. ^ Senanayake (2007) Tables 1, 2.

  31. ^ abNordstrom et al. (2000), p. 255.


  32. ^ 『化学便覧』 表 11.49.

  33. ^ ab垣内 2014, p. 101.


  34. ^ Licht (1985), p. 515.


  35. ^ 水町 (2003) p. 21.

  36. ^ abCovington et al. (1985), p. 539.


  37. ^ Buck et al. (2002), p. 2170.


  38. ^ Buck et al. (2002), p. 2198.


  39. ^ 計量単位令 別表第3項番5、濃度、ピーエッチ、「モル毎リットルで表した水素イオンの濃度の値に活動度係数を乗じた値の逆数の常用対数」


  40. ^ 濃度の計量単位、4)ピーエッチ(pH) MST、計装豆知識、1995年11月号


  41. ^ 計量単位規則 別表第2 濃度、ピーエッチの欄、「pH」


  42. ^ JIS B 7960-1 ガラス電極式水素イオン濃度計−取引又は証明用−第1部:検出器、JIS B 7960-2 ガラス電極式水素イオン濃度計−取引又は証明用−第2部:指示計(2015年改正)。

  43. ^ abJIS K 0213 分析化学用語(電気化学部門)用語番号 355(2014年改正)。


  44. ^ Martin Dollick, David P. Dutcher, 田辺宗一, 金子稔 『新和英中辞典』 研究社、2002年9月、第5版、1524頁。ISBN 9784767420585。


  45. ^ 小西友七・南出康世 『ジーニアス英和辞典 第4版』 大修館書店、2006年12月20日、第4版、1447頁。ISBN 9784469041705。


  46. ^ 竹林滋・東信行・諏訪部仁・市川泰男 編 『新英和中辞典』 研究社、2010年12月、第7版、1349頁。ISBN 9784767410784。


  47. ^ 山田𣝣・宮原信 監修 『ディコ仏語辞典』 白水社、2003年3月10日、第1版、1154頁。ISBN 9784560000380。


  48. ^ “pH”. Oxford Dictionaries. オックスフォード大学出版局. 2016年2月2日閲覧。



参考文献


  • J.G. Frey、H.L. Strauss 『物理化学で用いられる量・単位・記号』(PDF) 産業技術総合研究所計量標準総合センター訳、講談社、2009年、第3版。ISBN 978-406154359-1。2017年9月13日閲覧。

  • 左巻健男 『中学3年分の物理・化学が面白いほど解ける65のルール』 明日香出版社、2011年。ISBN 978-4756914798。

  • 垣内隆「あいまいな電気分析化学 (PDF) 」 、『Review of Polarography』第60巻第2号、日本ポーラログラフ学会、2014年、 99-109頁、 doi:10.5189/revpolarography.60.99。

  • 垣内隆、山本雅博「イオン液体塩橋を用いるpH測定 – 現状と展望 (PDF) 」 、『分析化学』第65巻第4号、日本分析化学会、2016年、 181-191頁、 doi:10.2116/bunsekikagaku.65.181。

  • 松久幸敬、赤木右 『地球化学概説』 日本地球化学会監修、培風館〈地球化学講座〉、2005年。ISBN 4-563-04901-8。

  • 水町邦彦 『酸と塩基』 裳華房〈化学サポートシリーズ〉、2003年。ISBN 9784785334109。

  • 田中元治 『酸と塩基』 裳華房〈基礎化学選書 8〉、1971年。NCID BN00729600。

  • 澤村精治 「9.6.2 固体の溶解度」『化学便覧 基礎編』II、日本化学会 編、丸善出版、2014年、改訂5版。ISBN 978-4621073414。

  • S. P. L. Sørensen 「酵素の研究 II 酵素反応における水素イオン濃度の測定と重要性について」『電解質の溶液化学』 田中元治 訳、日本化学会 編、学会出版センター〈化学の原典. 第2期 2〉、1984年。ISBN 4-7622-7382-1。

  • 藤原照文 「11.9 溶媒の諸物性」『化学便覧 基礎編』II、日本化学会 編、丸善出版、2014年、改訂5版。ISBN 978-4621073414。

  • 吉村壽人、松下寛、森本武利 『pHの理論と測定法』 丸善、1968年、新版。NCID BN01531187。


  • Sørensen, S. P. L. (1909). “Enzymstudien. II: Mitteilung. Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen”. Biochemische Zeitschrift 21: 131–304. 


  • Covington, A. K.; Bates, R. G.; Durst, R. A. (1985). “Definitions of pH scales, standard reference values, measurement of pH, and related terminology”. Pure and Applied Chemistry 57 (3): 531–542. doi:10.1351/pac198557030531. http://www.iupac.org/publications/pac/1985/pdf/5703x0531.pdf. 


  • Bates, R. G.; Guggenheim, E. A. (1960). “Report on the Standardization of pH and Related Terminology” (PDF). Pure and Applied Chemistry 1: 163-168. doi:10.1351/pac196001010163. https://www.iupac.org/publications/pac/pdf/1960/pdf/0101x0163.pdf. 


  • D. Kirk Nordstrom; Charles N. Alpers (1999). “Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California”. Proceedings of the National Academy of Sciences of the United States of America 96 (7): 3455–3462. doi:10.1073/pnas.96.7.3455. 


  • Stuart Licht (1985). “pH Measurement in Concentrated Alkaline Solutions”. Analytical Chemistry 57 (2): 514–519. doi:10.1021/ac50001a045. 


  • Gamini Senanayake (2007). “Review of theory and practice of measuring proton activity and pH in concentrated chloride solutions and application to oxide leaching”. Minerals engineering 20 (7): 634-645. doi:10.1016/j.mineng.2007.01.002. 


  • Darrell Kirk Nordstrom; Charles N. Alpers; Carol J. Ptacek; David W. Blowes (2000). “Negative pH and Extremely Acidic Mine Waters from Iron Mountain, California” (PDF). Environmental Science & Technology 34 (2): 254–258. doi:10.1021/es990646v. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1488&context=usgsstaffpub. 


  • R. P. Buck; S. Rondinini; A. K. Covington; F. G. K. Baucke; Christopher M. A. Brett; M. F. Camoes; M. J. T. Milton; T. Mussini et al. (2002). “Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002)” (PDF). Pure and Applied Chemistry 74 (11): 2169-2200. doi:10.1351/pac200274112169. https://www.iupac.org/publications/pac/2002/pdf/7411x2169.pdf. 


  • Lim, Kieran F. (2006). “Negative pH Does Exist” (PDF). Journal of Chemical Education 83 (10): 1465. doi:10.1021/ed083p1465. http://pubs.acs.org/doi/pdf/10.1021/ed083p1465. 


関連項目


  • 電離

  • 酸と塩基


外部リンク



  • pH (英語) - Encyclopedia of Earth「水素イオン指数」の項目。

Popular posts from this blog

Top Tejano songwriter Luis Silva dead of heart attack at 64

ReactJS Fetched API data displays live - need Data displayed static

政党