また、E写本群は、大幅な改定が加わっている「改訂版」であるが、19世紀に根拠が希薄なままアインハルト(775年頃 – 840年)の作とみなされ、『エインハルドゥスなるものの年代記 (Annales qui dicuntur Einhard)』などと題されていた。現在では、このアインハルト著作説は否定されている[1][6]。
脚注
出典
^ abcdefgBehr, Charlotte (1999), Annales regni Francorum, in Boyd, Kelly, , Encyclopedia of Historians and Historical Writing (Taylor & Francis) 2 (M-Z): pp. 35-36, //books.google.co.jp/books?id=JBqWbDmFsfEC&pg=PA35 ISBN 978-1-884-96433-6
^Kurze 1895, ARF (Monumenta Germaniae Historica 発行本)
^加納, 修. “結論”. 第12回国際研究集会報告書「歴史テクストにおけるテクスト布置」. Global COE program, Nagoya Universtity. May-2013閲覧。 PDF
^中井, 義明 (2009年11月6日). “09歴史の歴史-52中世の歴史叙述 Historiographies in Medieval Age”. 同志社大学. 2013年5月閲覧。 pdf
^cf. R. Collins, The ‘Reviser’ Revisited: Another Look at the Alternative Version of the Annales Regni Francorum, in : A. C. Murray (ed.), After Rome’s Fall. Narrators and Sources of Early Medieval History. Essays presented to Walter Goffart. Toronto/Buffalo/London 1998, 191–213; R. McKitterick, History and Memory in the Carolingian World. Cambridge 2005
参考文献
原書
Kurze, Friedrich, ed (1895). Annales regni Francorum (741–829) qui dicuntur Annales Laurissenses maiores et Einhardi. Post editionem G. H. Pertzii. Scriptores rerum germanicarum in usum scholarum. 6. Hannover. http://books.google.co.jp/books?id=kxs6AAAAMAAJ.
Loyn, H.R. and J. Percival (英訳). The Reign of Charlemagne. London, 1975. pp. 38–42. [AD 757, 788, 796, 800]
Scholz, Bernhard Walter (1970). Carolingian chronicles: Royal Frankish annals and Nithard's Histories. University of Michigan Press. ISBN 9780472061860. http://books.google.hr/books?id=sTzl6wFjehMC&dq.
外部リンク
Annales regni Francorum ラテン語原文、 The Latin Libraryサイト
Annales regni Francorum 、 Monumenta Germaniae Historicaサイト
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...