Posts

Showing posts from February 21, 2019

Can we have multiple addfinalizer in pytest

Image
0 I want to add multiple finalizer functions in pytest, so is it possible to add more than one addfinalizer. if yes then what will be the sequence of execution. Any help would be appreciated. Thanks python testing pytest share | improve this question asked Nov 15 '18 at 7:19 Harshit Sharma Harshit Sharma 6 4 add a comment  |  0 I want to add multiple finalizer functions in pytest, so is it possible to add more than one addfinalizer. if yes then what will be the sequence of execution. Any help would be appreciated. Thanks python testing pytest share | improve this question asked Nov 15 '18 at 7:19 Harshit Sharma Harshit Sharma 6 4 add a comment  |  0 0 0 I want to add multiple finalizer functions in pytest, so is it possible to add more than one addfinalizer. if yes then what will be the sequence of execution. Any help would be appreciated. Tha...

四職

四職 (ししき/ししょく)は、室町時代の武家の家格。 目次 1 概要 2 子孫 3 脚注 4 関連項目 概要 室町幕府の軍事指揮と京都市中の警察・徴税等を司る侍所の長官(頭人、所司)に交代で任じられた守護大名の赤松氏、一色氏、京極氏、山名氏の4氏を指して「 四職 」と称する。その一方...

Load pretrained model for training while changing optimizer

Image
0 1 In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer for further training. However, it strikes to me that it rise error like below: NotFoundError (see above for traceback): Key beta1_power not found in checkpoint [[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]] I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable do. The code I use is below: # 0. only 1 gpu os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 1. define global parameters args = get_parser() global_step = tf.Variable(name='global_step', initial_value=0, trainable=False) inc_op = tf.assign_add...