奧地利經濟學家弗里德里希·馮·維塞爾(Friedrich von Wieser)認爲只要有選擇、取捨存在,機會成本便存在。理性的經濟人力求把機會成本降至最少,這意味著為了現行選擇所放棄或犧牲的代價也是最少。機會成本是經濟學中廣泛應用的概念,不僅在個人決策中應用到,還可擴展至商品財貨的生產、交換和分配等經濟領域。[4]
^張清溪、許嘉棟、劉鶯釧、吳聰敏. 《經濟學》. 雙葉書廊. 2011: 第20頁. ISBN 9789574184798.
^詹姆斯·M·布坎南(1987). "opportunity cost," The New Palgrave: A Dictionary of Economics, v. 3, pp. 718-21.
^Friedrich von Wieser. A. Ford Hinrichs (translator), 编. Social Economics (PDF). New York: Adelphi. 1927 [2011-10-07]. • Friedrich von Wieser. Theorie der gesellschaftlichen Wirtschaft [Theory of Social Economics]. November 1914 (德语). Original publication.
参见
比较优势
绝对优势
外部链接
機會成本與生產可能性曲線[永久失效連結]
查
论
编
微觀經濟學 · 相關主題列表
基本概念
稀缺性
物品(經濟物品、免費物品、私用品、共用品)
約束極大化
機會成本
沉沒成本
利息
跨期選擇(英语:Intertemporal choice)
供給和需求(供給曲線、需求曲線)
彈性
經濟均衡
超額需求
超額供應(英语:Excess supply)
一般均衡
消費者理論
偏好
效用
等優曲線
預算線
收入–消費曲線(英语:Income–consumption curve)
不確定性
風險厭惡
損失規避
預期效用假說
企業理論
生產要素
分工
報酬遞減
生產成本(固定成本、變動成本、平均成本(英语:Average cost)、邊際成本)
利潤
等成本曲線(英语:Isocost)
等產量曲線
利潤最大化
規模經濟
範圍經濟(英语:Economies of scope)
市場分析
價格
經濟剩餘(消費者剩餘﹑生產者剩餘)
無謂損失
市場失靈
界外效應
市場形式(完全競爭、賣方壟斷、買方壟斷、寡頭壟斷、雙頭壟斷)
經濟效率(英语:Economic efficiency)
經濟公平(英语:Equity (economics))
社會抉擇(英语:Social choice)
研究分支
行為經濟學
企业经济学
計算經濟學
决策论
计量经济学
实验经济学
家庭經濟學
博弈论
產業組織
勞動經濟學
管理經濟學(英语:Managerial economics)
数理经济学
宏觀經濟學的微觀基礎(英语:Microfoundations)
運籌學
福利经济学
查
论
编
經濟學
宏觀經濟學
國內生產毛額 · 國民生產毛額 · 國民所得與生產帳 · 國際收支帳 · 貨幣 · 通貨 · 物價膨脹 · 失業 · 經濟衰退 · IS-LM模型 ·適應性預期 · 理性預期 · 中央銀行 · 金本位 · 劣幣驅逐良幣 · 貨幣政策 · 購買力平價 · 斯德哥爾摩學派 · 奧地利學派 · 凱恩斯經濟學 · 貨幣主義 · 新興古典學派 · 新興凱恩斯學派 · 供給面學派 · 雷根經濟學 · 福利經濟學 · 發展經濟學 · 政治經濟學 ·List of economics topics(英语:List of economics topics) · List of economic geography topics ·List of international trade topics(英语:List of international trade topics) ·Publications(英语:List of publications in economics#Macroeconomics)
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...