Tensorflow - error about tf.WholeFileReader, coordinator, threads, queue
I am creating simple code that creates an RGB image in grayscale. Even if this does not work properly, I hope the code will be executed. I have a question about thread usage. Below is the code.
with tf.variable_scope("color"): -> make variable(similar to VGG16)
def conv_layer(x, weights, biases, stride, name="convlayer", padding='SAME'):
return tf.nn.relu(tf.nn.conv2d(x, weights, strides=stride, padding=padding) + biases, name=name)
def read_my_file_format(filename_queue, randomize=False):
reader = tf.WholeFileReader()
key, file = reader.read(filename_queue)
uint8image = tf.image.decode_jpeg(file, channels=3)
uint8image = tf.random_crop(uint8image, (224, 224, 3))
if randomize:
uint8image = tf.image.random_flip_left_right(uint8image)
uint8image = tf.image.random_flip_up_down(uint8image, seed=None)
float_image = tf.div(tf.cast(uint8image, tf.float32), 255)
return float_image
def input_pipeline(filenames, batch_size, num_epochs=None):
filename_queue = tf.train.string_input_producer(
filenames, num_epochs=num_epochs, shuffle=False)
example = read_my_file_format(filename_queue, randomize=False)
min_after_dequeue = 5
capacity = min_after_dequeue + 3 * batch_size
example_batch = tf.train.shuffle_batch(
[example], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return example_batch
with tf.name_scope("images_setting"):
filenames = sorted(glob.glob("C:/example/*.jpg"))
# filenames = ['C:/example/000005.jpg', 'C:/example/000007.jpg ~~~~']
batch_size = 2
num_epochs = 100
colorimage = input_pipeline(filenames, batch_size, num_epochs=num_epochs)
grayscale = tf.image.rgb_to_grayscale(colorimage)
with tf.name_scope("layer_explain"):
expand = tf.image.grayscale_to_rgb(grayscale)
conv1_1 = conv_layer(expand, conv1_1_weights, conv1_1_biases, stride1, 'conv1_1')
conv1_2 = conv_layer(conv1_1, conv1_2_weights, conv1_2_biases, stride1, 'conv1_2')
conv2_1 = conv_layer(conv1_2, conv2_1_weights, conv2_1_biases, stride1, 'conv2_1')
conv2_2 = conv_layer(conv2_1, conv2_2_weights, conv2_2_biases, stride1, 'conv2_2')
conv3_1 = conv_layer(conv2_2, conv3_1_weights, conv3_1_biases, stride1, 'conv3_1')
conv3_2 = conv_layer(conv3_1, conv3_2_weights, conv3_2_biases, stride1, 'conv3_2')
conv3_3 = conv_layer(conv3_2, conv3_3_weights, conv3_3_biases, stride1, 'conv3_3')
conv4_1 = conv_layer(conv3_3, conv4_1_weights, conv4_1_biases, stride1, 'conv4_1')
conv4_2 = conv_layer(conv4_1, conv4_2_weights, conv4_2_biases, stride1, 'conv4_2')
conv4_3 = conv_layer(conv4_2, conv4_3_weights, conv4_3_biases, stride1, 'conv4_3')
conv5_1 = conv_layer(conv4_3, conv5_1_weights, conv5_1_biases, stride1, 'conv5_1')
conv5_2 = conv_layer(conv5_1, conv5_2_weights, conv5_2_biases, stride1, 'conv5_2')
conv5_3 = conv_layer(conv5_2, conv5_3_weights, conv5_3_biases, stride1, 'conv5_3')
print("conv5_3: ", conv5_3)
print("colorimage: ", colorimage)
loss = tf.reduce_mean(tf.square(conv5_3 - colorimage))
optimizer = tf.train.GradientDescentOptimizer(0.001)
opt = optimizer.minimize(loss)
init_global = tf.global_variables_initializer()
init_local = tf.local_variables_initializer()
sess = tf.Session()
sess.run(init_global)
sess.run(init_local)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
print("expand: ", expand)
print("conv1_1: ", conv1_1)
print("grayscale: ", grayscale)
print(filenames, '**********************')
try:
while not coord.should_stop():
training_opt = sess.run(opt)
for i in range(10):
loss = sess.run(loss)
print("cost: ".format(loss))
except Exception as ex:
print(ex)
print("Done training -- epoch limit reached")
finally:
coord.request_stop()
coord.join(threads)
sess.close()
Error message:
(cost: 0.2219611406326294)
Fetch argument 0.22196114 has invalid type
, must be a string or Tensor. (Can not convert
a float32 into a Tensor or Operation.)
--> This is error... I think the message means something wrong at "loss funcion"
(Done training -- epoch limit reached)
multithreading tensorflow queue
add a comment |
I am creating simple code that creates an RGB image in grayscale. Even if this does not work properly, I hope the code will be executed. I have a question about thread usage. Below is the code.
with tf.variable_scope("color"): -> make variable(similar to VGG16)
def conv_layer(x, weights, biases, stride, name="convlayer", padding='SAME'):
return tf.nn.relu(tf.nn.conv2d(x, weights, strides=stride, padding=padding) + biases, name=name)
def read_my_file_format(filename_queue, randomize=False):
reader = tf.WholeFileReader()
key, file = reader.read(filename_queue)
uint8image = tf.image.decode_jpeg(file, channels=3)
uint8image = tf.random_crop(uint8image, (224, 224, 3))
if randomize:
uint8image = tf.image.random_flip_left_right(uint8image)
uint8image = tf.image.random_flip_up_down(uint8image, seed=None)
float_image = tf.div(tf.cast(uint8image, tf.float32), 255)
return float_image
def input_pipeline(filenames, batch_size, num_epochs=None):
filename_queue = tf.train.string_input_producer(
filenames, num_epochs=num_epochs, shuffle=False)
example = read_my_file_format(filename_queue, randomize=False)
min_after_dequeue = 5
capacity = min_after_dequeue + 3 * batch_size
example_batch = tf.train.shuffle_batch(
[example], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return example_batch
with tf.name_scope("images_setting"):
filenames = sorted(glob.glob("C:/example/*.jpg"))
# filenames = ['C:/example/000005.jpg', 'C:/example/000007.jpg ~~~~']
batch_size = 2
num_epochs = 100
colorimage = input_pipeline(filenames, batch_size, num_epochs=num_epochs)
grayscale = tf.image.rgb_to_grayscale(colorimage)
with tf.name_scope("layer_explain"):
expand = tf.image.grayscale_to_rgb(grayscale)
conv1_1 = conv_layer(expand, conv1_1_weights, conv1_1_biases, stride1, 'conv1_1')
conv1_2 = conv_layer(conv1_1, conv1_2_weights, conv1_2_biases, stride1, 'conv1_2')
conv2_1 = conv_layer(conv1_2, conv2_1_weights, conv2_1_biases, stride1, 'conv2_1')
conv2_2 = conv_layer(conv2_1, conv2_2_weights, conv2_2_biases, stride1, 'conv2_2')
conv3_1 = conv_layer(conv2_2, conv3_1_weights, conv3_1_biases, stride1, 'conv3_1')
conv3_2 = conv_layer(conv3_1, conv3_2_weights, conv3_2_biases, stride1, 'conv3_2')
conv3_3 = conv_layer(conv3_2, conv3_3_weights, conv3_3_biases, stride1, 'conv3_3')
conv4_1 = conv_layer(conv3_3, conv4_1_weights, conv4_1_biases, stride1, 'conv4_1')
conv4_2 = conv_layer(conv4_1, conv4_2_weights, conv4_2_biases, stride1, 'conv4_2')
conv4_3 = conv_layer(conv4_2, conv4_3_weights, conv4_3_biases, stride1, 'conv4_3')
conv5_1 = conv_layer(conv4_3, conv5_1_weights, conv5_1_biases, stride1, 'conv5_1')
conv5_2 = conv_layer(conv5_1, conv5_2_weights, conv5_2_biases, stride1, 'conv5_2')
conv5_3 = conv_layer(conv5_2, conv5_3_weights, conv5_3_biases, stride1, 'conv5_3')
print("conv5_3: ", conv5_3)
print("colorimage: ", colorimage)
loss = tf.reduce_mean(tf.square(conv5_3 - colorimage))
optimizer = tf.train.GradientDescentOptimizer(0.001)
opt = optimizer.minimize(loss)
init_global = tf.global_variables_initializer()
init_local = tf.local_variables_initializer()
sess = tf.Session()
sess.run(init_global)
sess.run(init_local)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
print("expand: ", expand)
print("conv1_1: ", conv1_1)
print("grayscale: ", grayscale)
print(filenames, '**********************')
try:
while not coord.should_stop():
training_opt = sess.run(opt)
for i in range(10):
loss = sess.run(loss)
print("cost: ".format(loss))
except Exception as ex:
print(ex)
print("Done training -- epoch limit reached")
finally:
coord.request_stop()
coord.join(threads)
sess.close()
Error message:
(cost: 0.2219611406326294)
Fetch argument 0.22196114 has invalid type
, must be a string or Tensor. (Can not convert
a float32 into a Tensor or Operation.)
--> This is error... I think the message means something wrong at "loss funcion"
(Done training -- epoch limit reached)
multithreading tensorflow queue
add a comment |
I am creating simple code that creates an RGB image in grayscale. Even if this does not work properly, I hope the code will be executed. I have a question about thread usage. Below is the code.
with tf.variable_scope("color"): -> make variable(similar to VGG16)
def conv_layer(x, weights, biases, stride, name="convlayer", padding='SAME'):
return tf.nn.relu(tf.nn.conv2d(x, weights, strides=stride, padding=padding) + biases, name=name)
def read_my_file_format(filename_queue, randomize=False):
reader = tf.WholeFileReader()
key, file = reader.read(filename_queue)
uint8image = tf.image.decode_jpeg(file, channels=3)
uint8image = tf.random_crop(uint8image, (224, 224, 3))
if randomize:
uint8image = tf.image.random_flip_left_right(uint8image)
uint8image = tf.image.random_flip_up_down(uint8image, seed=None)
float_image = tf.div(tf.cast(uint8image, tf.float32), 255)
return float_image
def input_pipeline(filenames, batch_size, num_epochs=None):
filename_queue = tf.train.string_input_producer(
filenames, num_epochs=num_epochs, shuffle=False)
example = read_my_file_format(filename_queue, randomize=False)
min_after_dequeue = 5
capacity = min_after_dequeue + 3 * batch_size
example_batch = tf.train.shuffle_batch(
[example], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return example_batch
with tf.name_scope("images_setting"):
filenames = sorted(glob.glob("C:/example/*.jpg"))
# filenames = ['C:/example/000005.jpg', 'C:/example/000007.jpg ~~~~']
batch_size = 2
num_epochs = 100
colorimage = input_pipeline(filenames, batch_size, num_epochs=num_epochs)
grayscale = tf.image.rgb_to_grayscale(colorimage)
with tf.name_scope("layer_explain"):
expand = tf.image.grayscale_to_rgb(grayscale)
conv1_1 = conv_layer(expand, conv1_1_weights, conv1_1_biases, stride1, 'conv1_1')
conv1_2 = conv_layer(conv1_1, conv1_2_weights, conv1_2_biases, stride1, 'conv1_2')
conv2_1 = conv_layer(conv1_2, conv2_1_weights, conv2_1_biases, stride1, 'conv2_1')
conv2_2 = conv_layer(conv2_1, conv2_2_weights, conv2_2_biases, stride1, 'conv2_2')
conv3_1 = conv_layer(conv2_2, conv3_1_weights, conv3_1_biases, stride1, 'conv3_1')
conv3_2 = conv_layer(conv3_1, conv3_2_weights, conv3_2_biases, stride1, 'conv3_2')
conv3_3 = conv_layer(conv3_2, conv3_3_weights, conv3_3_biases, stride1, 'conv3_3')
conv4_1 = conv_layer(conv3_3, conv4_1_weights, conv4_1_biases, stride1, 'conv4_1')
conv4_2 = conv_layer(conv4_1, conv4_2_weights, conv4_2_biases, stride1, 'conv4_2')
conv4_3 = conv_layer(conv4_2, conv4_3_weights, conv4_3_biases, stride1, 'conv4_3')
conv5_1 = conv_layer(conv4_3, conv5_1_weights, conv5_1_biases, stride1, 'conv5_1')
conv5_2 = conv_layer(conv5_1, conv5_2_weights, conv5_2_biases, stride1, 'conv5_2')
conv5_3 = conv_layer(conv5_2, conv5_3_weights, conv5_3_biases, stride1, 'conv5_3')
print("conv5_3: ", conv5_3)
print("colorimage: ", colorimage)
loss = tf.reduce_mean(tf.square(conv5_3 - colorimage))
optimizer = tf.train.GradientDescentOptimizer(0.001)
opt = optimizer.minimize(loss)
init_global = tf.global_variables_initializer()
init_local = tf.local_variables_initializer()
sess = tf.Session()
sess.run(init_global)
sess.run(init_local)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
print("expand: ", expand)
print("conv1_1: ", conv1_1)
print("grayscale: ", grayscale)
print(filenames, '**********************')
try:
while not coord.should_stop():
training_opt = sess.run(opt)
for i in range(10):
loss = sess.run(loss)
print("cost: ".format(loss))
except Exception as ex:
print(ex)
print("Done training -- epoch limit reached")
finally:
coord.request_stop()
coord.join(threads)
sess.close()
Error message:
(cost: 0.2219611406326294)
Fetch argument 0.22196114 has invalid type
, must be a string or Tensor. (Can not convert
a float32 into a Tensor or Operation.)
--> This is error... I think the message means something wrong at "loss funcion"
(Done training -- epoch limit reached)
multithreading tensorflow queue
I am creating simple code that creates an RGB image in grayscale. Even if this does not work properly, I hope the code will be executed. I have a question about thread usage. Below is the code.
with tf.variable_scope("color"): -> make variable(similar to VGG16)
def conv_layer(x, weights, biases, stride, name="convlayer", padding='SAME'):
return tf.nn.relu(tf.nn.conv2d(x, weights, strides=stride, padding=padding) + biases, name=name)
def read_my_file_format(filename_queue, randomize=False):
reader = tf.WholeFileReader()
key, file = reader.read(filename_queue)
uint8image = tf.image.decode_jpeg(file, channels=3)
uint8image = tf.random_crop(uint8image, (224, 224, 3))
if randomize:
uint8image = tf.image.random_flip_left_right(uint8image)
uint8image = tf.image.random_flip_up_down(uint8image, seed=None)
float_image = tf.div(tf.cast(uint8image, tf.float32), 255)
return float_image
def input_pipeline(filenames, batch_size, num_epochs=None):
filename_queue = tf.train.string_input_producer(
filenames, num_epochs=num_epochs, shuffle=False)
example = read_my_file_format(filename_queue, randomize=False)
min_after_dequeue = 5
capacity = min_after_dequeue + 3 * batch_size
example_batch = tf.train.shuffle_batch(
[example], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return example_batch
with tf.name_scope("images_setting"):
filenames = sorted(glob.glob("C:/example/*.jpg"))
# filenames = ['C:/example/000005.jpg', 'C:/example/000007.jpg ~~~~']
batch_size = 2
num_epochs = 100
colorimage = input_pipeline(filenames, batch_size, num_epochs=num_epochs)
grayscale = tf.image.rgb_to_grayscale(colorimage)
with tf.name_scope("layer_explain"):
expand = tf.image.grayscale_to_rgb(grayscale)
conv1_1 = conv_layer(expand, conv1_1_weights, conv1_1_biases, stride1, 'conv1_1')
conv1_2 = conv_layer(conv1_1, conv1_2_weights, conv1_2_biases, stride1, 'conv1_2')
conv2_1 = conv_layer(conv1_2, conv2_1_weights, conv2_1_biases, stride1, 'conv2_1')
conv2_2 = conv_layer(conv2_1, conv2_2_weights, conv2_2_biases, stride1, 'conv2_2')
conv3_1 = conv_layer(conv2_2, conv3_1_weights, conv3_1_biases, stride1, 'conv3_1')
conv3_2 = conv_layer(conv3_1, conv3_2_weights, conv3_2_biases, stride1, 'conv3_2')
conv3_3 = conv_layer(conv3_2, conv3_3_weights, conv3_3_biases, stride1, 'conv3_3')
conv4_1 = conv_layer(conv3_3, conv4_1_weights, conv4_1_biases, stride1, 'conv4_1')
conv4_2 = conv_layer(conv4_1, conv4_2_weights, conv4_2_biases, stride1, 'conv4_2')
conv4_3 = conv_layer(conv4_2, conv4_3_weights, conv4_3_biases, stride1, 'conv4_3')
conv5_1 = conv_layer(conv4_3, conv5_1_weights, conv5_1_biases, stride1, 'conv5_1')
conv5_2 = conv_layer(conv5_1, conv5_2_weights, conv5_2_biases, stride1, 'conv5_2')
conv5_3 = conv_layer(conv5_2, conv5_3_weights, conv5_3_biases, stride1, 'conv5_3')
print("conv5_3: ", conv5_3)
print("colorimage: ", colorimage)
loss = tf.reduce_mean(tf.square(conv5_3 - colorimage))
optimizer = tf.train.GradientDescentOptimizer(0.001)
opt = optimizer.minimize(loss)
init_global = tf.global_variables_initializer()
init_local = tf.local_variables_initializer()
sess = tf.Session()
sess.run(init_global)
sess.run(init_local)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
print("expand: ", expand)
print("conv1_1: ", conv1_1)
print("grayscale: ", grayscale)
print(filenames, '**********************')
try:
while not coord.should_stop():
training_opt = sess.run(opt)
for i in range(10):
loss = sess.run(loss)
print("cost: ".format(loss))
except Exception as ex:
print(ex)
print("Done training -- epoch limit reached")
finally:
coord.request_stop()
coord.join(threads)
sess.close()
Error message:
(cost: 0.2219611406326294)
Fetch argument 0.22196114 has invalid type
, must be a string or Tensor. (Can not convert
a float32 into a Tensor or Operation.)
--> This is error... I think the message means something wrong at "loss funcion"
(Done training -- epoch limit reached)
multithreading tensorflow queue
multithreading tensorflow queue
edited May 30 '17 at 13:53
이주성
asked May 30 '17 at 7:42
이주성이주성
62
62
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
The issue is the following line:
loss = sess.run(loss)
The first time it runs, loss
is a Tensor, so when session.run returns its value, the python variable loss
is not a python float, which you cannot pass to session.run.
Do instead something like
loss_value = sess.run(loss)
and you'll be fine.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f44256353%2ftensorflow-error-about-tf-wholefilereader-coordinator-threads-queue%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The issue is the following line:
loss = sess.run(loss)
The first time it runs, loss
is a Tensor, so when session.run returns its value, the python variable loss
is not a python float, which you cannot pass to session.run.
Do instead something like
loss_value = sess.run(loss)
and you'll be fine.
add a comment |
The issue is the following line:
loss = sess.run(loss)
The first time it runs, loss
is a Tensor, so when session.run returns its value, the python variable loss
is not a python float, which you cannot pass to session.run.
Do instead something like
loss_value = sess.run(loss)
and you'll be fine.
add a comment |
The issue is the following line:
loss = sess.run(loss)
The first time it runs, loss
is a Tensor, so when session.run returns its value, the python variable loss
is not a python float, which you cannot pass to session.run.
Do instead something like
loss_value = sess.run(loss)
and you'll be fine.
The issue is the following line:
loss = sess.run(loss)
The first time it runs, loss
is a Tensor, so when session.run returns its value, the python variable loss
is not a python float, which you cannot pass to session.run.
Do instead something like
loss_value = sess.run(loss)
and you'll be fine.
answered Nov 15 '18 at 18:21
Alexandre PassosAlexandre Passos
4,2961917
4,2961917
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f44256353%2ftensorflow-error-about-tf-wholefilereader-coordinator-threads-queue%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown