Chironomidae
Chironomidae | |
---|---|
Male Chironomus plumosus | |
Scientific classification | |
Kingdom: | Animalia |
Clade: | Euarthropoda |
Class: | Insecta |
Order: | Diptera |
Suborder: | Nematocera |
Infraorder: | Culicomorpha |
Superfamily: | Chironomoidea |
Family: | Chironomidae |
Subfamilies | |
See text |
The Chironomidae (informally known as chironomids, nonbiting midges, or lake flies) comprise a families of nematoceran flies with a global distribution. They are closely related to the Ceratopogonidae, Simuliidae, and Thaumaleidae. Many species superficially resemble mosquitoes, but they lack the wing scales and elongated mouthparts of the Culicidae.
The name Chironomidae stems from the Ancient Greek word kheironómos, "a pantomimist").
Contents
1 Common names and biodiversity
2 Behavior and description
3 Ecology
4 Anhydrobiosis and stress resistance
5 Subfamilies and genera
6 References
7 External links
Common names and biodiversity
This is a large taxon of insects; some estimates of the species numbers suggest well over 10000 world-wide.[1] Males are easily recognized by their plumose antennae. Adults are known by a variety of vague and inconsistent common names, largely by confusion with other insects. For example, chironomids are known as "lake flies" in parts of Canada and Lake Winnebago, Wisconsin, but "bay flies" in the areas near the bay of Green Bay, Wisconsin. They are called "sand flies", "muckleheads",[2] "muffleheads",[3] "Canadian soldiers",[4] or "American soldiers"[5] in various regions of the Great Lakes area. They have been called "blind mosquitoes" or "chizzywinks" in Florida.[6] However, they are not mosquitoes of any sort, and the term "sandflies" generally refers to various species of biting flies unrelated to the Chironomidae.
The group includes Belgica antarctica, the largest terrestrial animal of Antarctica.[citation needed]
The biodiversity of the Chironomidae often goes unnoticed because they are notoriously difficult to identify and ecologists usually record them by species groups. Each morphologically distinct group comprises a number of morphologically identical (sibling) species that can only be identified by rearing adult males or by cytogenetic analysis of the polytene chromosomes. Polytene chromosomes were originally observed in the larval salivary glands of Chironomus midges by Balbiani in 1881. They form through repeated rounds of DNA replication without cell division, resulting in characteristic light and dark banding patterns which can be used to identify inversions and deletions which allow species identification.
Behavior and description
Larval stages of the Chironomidae can be found in almost any aquatic or semiaquatic habitat, including treeholes, bromeliads, rotting vegetation, soil, and in sewage and artificial containers. They form an important fraction of the macrozoobenthos of most freshwater ecosystems. They are often associated with degraded or low-biodiversity ecosystems because some species have adapted to virtually anoxic conditions and are dominant in polluted waters.
Larvae of some species are bright red in color due to a hemoglobin analog; these are often known as "bloodworms".[7]
Their ability to capture oxygen is further increased by their making undulating movements.[8]
Many reference sources in the past century or so have repeated the assertion that the Chironomidae do not feed as adults, but an increasing body of evidence contradicts this view. Adults of many species do, in fact, feed. The natural foods reported include fresh fly droppings, nectar, pollen, honeydew, and various sugar-rich materials.[1]
The question whether feeding is of practical importance has by now been clearly settled for some Chironomus species, at least; specimens that had fed on sucrose flew far longer than starved specimens, and starved females longer than starved males, which suggested they had eclosed with larger reserves of energy than the males. Some authors suggest the females and males apply the resources obtained in feeding differently. Males expend the extra energy on flight, while females use their food resources to achieve longer lifespans. The respective strategies should be compatible with maximal probability of successful mating and reproduction in those species that do not mate immediately after eclosion, and in particular in species that have more than one egg mass maturing, the less developed masses being oviposited after a delay. Such variables also would be relevant to species that exploit wind for dispersal, laying eggs at intervals. Chironomids that feed on nectar or pollen may well be of importance as pollinators, but current evidence on such points is largely anecdotal. However, the content of protein and other nutrients in pollen, in comparison to nectar, might well contribute to the females' reproductive capacities.[1]
Adults can be pests when they emerge in large numbers. They can damage paint, brick, and other surfaces with their droppings. When large numbers of adults die, they can build up into malodorous piles. They can provoke allergic reactions in sensitive individuals.[9]
Ecology
Larvae and pupae are important food items for fish, such as trout, banded killifish, and sticklebacks, and for many other aquatic organisms as well such as newts. Many aquatic insects, such as various predatory hemipterans in the families Nepidae, Notonectidae, and Corixidae eat Chironomidae in their aquatic phases. So do predatory water beetles in families such as the Dytiscidae and Hydrophilidae. The flying midges are eaten by fish and insectivorous birds, such as swallows and martins. They also are preyed on by bats and flying predatory insects, such as Odonata and dance flies.
The Chironomidae are important as indicator organisms, i.e., the presence, absence, or quantities of various species in a body of water can indicate whether pollutants are present. Also, their fossils are widely used by palaeolimnologists as indicators of past environmental changes, including past climatic variability.[10] Contemporary specimens are used by forensic entomologists as medico-legal markers for the postmortem interval assessment.[11]
A number of chironomid species inhabit marine habitats. Midges of the genus Clunio are found in the intertidal zone, where they have adjusted their entire life cycle to the rhythm of the tides. This made the species Clunio marinus an important model species for research in the field of chronobiology.[12]
Anhydrobiosis and stress resistance
Anhydrobiosis is the ability of an organism to survive in the dry state. Anhydrobiotic larvae of the African chironomid Polypedilum vanderplanki can withstand prolonged complete desiccation (reviewed by Cornette and Kikawada[13]). These larvae can also withstand other external stresses including ionizing radiation.[14] The effects of anhydrobiosis, gamma ray and heavy-ion irradiation on the nuclear DNA and gene expression of these larvae were studied by Gusev et al.[14] They found that larval DNA becomes severely fragmented both upon anhydrobiosis and irradiation, and that these breaks are later repaired during rehydration or upon recovery from irradiation. An analysis of gene expression and antioxidant activity suggested the importance of removal of reactive oxygen species as well as the removal of DNA damages by repair enzymes. Expression of genes encoding DNA repair enzymes increased upon entering anhydrobiosis or upon exposure to radiation, and these increases indicated that when DNA damages occurred, they were subsequently repaired. In particular, expression of the Rad51 gene was substantially up-regulated following irradiation and during rehydration.[14] The Rad51 protein plays a key role in homologous recombination, a process required for the accurate repair of DNA double-strand breaks.
Subfamilies and genera
The family is divided into 11 subfamilies: Aphroteniinae, Buchonomyiinae, Chilenomyinae, Chironominae, Diamesinae, Orthocladiinae, Podonominae, Prodiamesinae, Tanypodinae, Telmatogetoninae, and Usambaromyiinae.[15][16]
Most species belong to Chironominae, Orthocladiinae, and Tanypodinae. Diamesinae, Podonominae, Prodiamesinae, and Telmatogetoninae are medium-sized subfamilies with tens to hundreds of species. The remaining four subfamilies have fewer than five species each.
Aagaardia Sæther, 2000
Abiskomyia Edwards, 1937
Ablabesmyia Johannsen, 1905- Acalcarella
Acamptocladius Brundin, 1956
Acricotopus Kieffer, 1921- Aedokritus
- Aenne
- Afrochlus
Afrozavrelia Harrison, 2004[17]- Allocladius
- Allometriocnemus
- Allotrissocladius
Alotanypus Roback, 1971- Amblycladius
- Amnihayesomyia
- Amphismittia
- Anaphrotenia
Anatopynia Johannsen, 1905- Ancylocladius
- Andamanus
Antillocladius Sæther, 1981- Anuncotendipes
Apedilum Townes, 1945- Aphrotenia
- Aphroteniella
Apometriocnemus Sæther, 1984
Apsectrotanypus Fittkau, 1962- Archaeochlus
Arctodiamesa Makarchenko, 1983[18]
Arctopelopia Fittkau, 1962- Arctosmittia
- Asachironomus
- Asclerina
Asheum Sublette & Sublette, 1983- Australopelopia
- Austrobrillia
- Austrochlus
- Austrocladius
Axarus Roback 1980- Baeoctenus
Baeotendipes Kieffer, 1913- Bavarismittia
Beardius Reiss & Sublette, 1985
Beckidia Sæther 1979- Belgica
- Bernhardia
- Bethbilbeckia
- Biwatendipes
Boreochlus Edwards, 1938
Boreoheptagyia Brundin 1966- Boreosmittia
- Botryocladius
Brillia Kieffer, 1913- Brundiniella
- Brunieria
Bryophaenocladius Thienemann, 1934
Buchonomyia Fittkau, 1955- Caladomyia
- Camposimyia
Camptocladius van der Wulp, 1874- Cantopelopia
Carbochironomus Reiss & Kirschbaum 1990
Cardiocladius Kieffer, 1912
Chaetocladius Kieffer, 1911- Chasmatonotus
Chernovskiia Sæther 1977- Chilenomyia
- Chirocladius
- Chironomidae (genus)
- Chironominae
- Chironomini
Chironomus Meigen, 1803- Chrysopelopia
Cladopelma Kieffer, 1921
Cladotanytarsus Kieffer, 1921
Clinotanypus Kieffer, 1913
Clunio Haliday, 1855- Coelopynia
- Coelotanypus
- Coffmania
- Collartomyia
- Colosmittia
Compteromesa Sæther 1981- Compterosmittia
Conchapelopia Fittkau, 1957- Conochironomus
Constempellina Brundin, 1947
Corynocera Zetterstedt, 1838
Corynoneura Winnertz, 1846
Corynoneurella Brundin, 1949- Corytibacladius
Cricotopus van der Wulp, 1874
Cryptochironomus Kieffer, 1918
Cryptotendipes Lenz, 1941
Cyphomella Sæther 1977- Dactylocladius
- Daitoyusurika
Demeijerea Kruseman, 1933
Demicryptochironomus Lenz, 1941- Denopelopia
- Derotanypus
Diamesa Meigen in Gistl, 1835- Diamesinae
Dicrotendipes Kieffer, 1913
Diplocladius Kieffer, 1908- Diplosmittia
Djalmabatista Fittkau, 1968- Doithrix
- Doloplastus
- Doncricotopus
- Dratnalia
- Echinocladius
- Edwardsidia
Einfeldia Kieffer, 1924
Endochironomus Kieffer, 1918- Endotribelos
Epoicocladius Sulc & ZavÍel, 1924- Eretmoptera
Eukiefferiella Thienemann, 1926
Eurycnemus van der Wulp, 1874
Euryhapsis Oliver, 1981- Eusmittia
- Fissimentum
- Fittkauimyia
- Fleuria
- Freemaniella
- Friederia
Georthocladius Strenzke, 1941
Gillotia Kieffer, 1921- Glushkovella
Glyptotendipes Kieffer, 1913- Goeldichironomus
Graceus Goetghebuer, 1928- Gravatamberus
- Gressittius
- Guassutanypus
Guttipelopia Fittkau, 1962
Gymnometriocnemus Goetghebeur, 1932- Gynnidocladius
Gynocladius Mendes, Sæther & Andrade-Morraye, 2005- Hahayusurika
- Halirytus
Halocladius Hirvenoja, 1973- Hanochironomus
- Hanocladius
Harnischia Kieffer, 1921- Harrisius
- Harrisonina
Hayesomyia Murray & Fittkau, 1985
Heleniella Gouin, 1943
Helopelopia Roback, 1971- Henrardia
- Heptagyia
Heterotanytarsus Spärck, 1923
Heterotrissocladius Spärck, 1923- Hevelius
- Himatendipes
- Hirosimayusurika
Hudsonimyia Roback, 1979[19]- Hydrobaenus
- Hydrosmittia
- Hyporhygma
Ichthyocladius Fittkau, 1974- Ikiprimus
- Ikisecundus
- Imparipecten
- Indoaxarus
- Indocladius
- Ionthosmittia
- Irisobrillia
- Kaluginia
- Kamelopelopia
- Kaniwhaniwhanus
- Kiefferophyes
Kiefferulus Goetghebuer, 1922- Knepperia
Kloosia Kruseman 1933
Krenopelopia Fittkau, 1962- Krenopsectra
Krenosmittia Thienemann & Krüger, 1939- Kribiobius
- Kribiocosmus
- Kribiodosis
- Kribiopelma
- Kribiothauma
- Kribioxenus
- Kurobebrillia
- Kuschelius
Labrundinia Fittkau, 1962
Lappodiamesa Serra-Tosio, 1968- Lappokiefferiella
- Lapposmittia
Larsia Fittkau, 1962
Lasiodiamesa Kieffer, 1924- Laurotanypus
Lauterborniella Thienemann & Bause, 1913- Lepidopelopia
- Lepidopodus
- Lerheimia
- Limaya
Limnophyes Eaton, 1875- Lindebergia
- Linevitshia
Lipiniella Shilova 1961- Lipurometriocnemus
- Lithotanytarsus
Litocladius Andersen, Mendes & Sæther 2004- Ljungneria
- Lobodiamesa
- Lobomyia
- Lobosmittia
- Lopescladius
- Lunditendipes
Lyrocladius Mendes & Andersen, 2008
Macropelopia Thienemann, 1916- Macropelopini
- Manoa
- Maoridiamesa
- Mapucheptagyia
- Maryella
- Mecaorus
- Megacentron
- Mesocricotopus
Mesosmittia Brundin, 1956
Metriocnemus van der Wulp, 1874
Microchironomus Kieffer, 1918
Micropsectra Kieffer, 1909
Microtendipes Kieffer, 1915- Microzetia
- Molleriella
- Mongolchironomus
- Mongolcladius
- Mongolyusurika
Monodiamesa Kieffer, 1922
Monopelopia Fittkau, 1962- Murraycladius
- Nakataia
- Nandeca
Nanocladius Kieffer, 1913- Naonella
- Nasuticladius
Natarsia Fittkau, 1962- Neelamia
- Neobrillia
- Neopodonomus
- Neostempellina
Neozavrelia Goetghebuer, 1941- Nesiocladius
- Nilodorum
- Nilodosis
Nilotanypus Kieffer, 1923
Nilothauma Kieffer, 1921- Nimbocera
- Notocladius
Odontomesa Pagast, 1947- Okayamayusurika
- Okinawayusurika
Olecryptotendipes Zorina, 2007[20]- Oleia
Oliveridia Sæther, 1980
Omisus Townes, 1945- Onconeura
- Ophryophorus
- Oreadomyia
- Orthocladiinae
Orthocladius van der Wulp, 1874- Oryctochlus
- Oukuriella
Pagastia Oliver, 1959
Pagastiella Brundin, 1949
Paraboreochlus Thienemann, 1939- Parachaetocladius
Parachironomus Lenz, 1921
Paracladius Hirvenoja, 1973
Paracladopelma Harnisch, 1923
Paracricotopus Thienemann & Harnisch, 1932
Parakiefferiella Thienemann, 1936
Paralauterborniella Lenz, 1941
Paralimnophyes Brundin, 1956
Paramerina Fittkau, 1962
Parametriocnemus Goetghebuer, 1932- Pamirocesa
- Paraborniella
- Parachironominae
- Paradoxocladius
- Paraheptagyia
- Paranilothauma
- Parapentaneura
Paraphaenocladius Thienemann, 1924- Paraphrotenia
Parapsectra Reiss, 1969- Parapsectrocladius
- Parasmittia
Paratanytarsus Thienemann & Bause, 1913
Paratendipes Kieffer, 1911
Paratrichocladius Thienemann, 1942
Paratrissocladius ZavÍel, 1937
Parochlus Enderlein, 1912
Parorthocladius Thienemann, 1935- Parvitergum
- Paucispinigera
- Pelomus
- Pentaneura
- Pentaneurella
- Pentaneurini
- Pentapedilum
- Petalocladius
Phaenopsectra Kieffer, 1921- Physoneura
- Pirara
Platysmittia Sæther, 1982- Plhudsonia
- Podochlus
- Podonomopsis
- Podonomus
Polypedilum Kieffer, 1912- Pontomyia
Potthastia Kieffer, 1922- Prochironomus
- Procladiini
Procladius Skuse, 1889
Prodiamesa Kieffer, 1906- Propsilocerus
- Prosmittia
Protanypus Kieffer, 1906
Psectrocladius Kieffer, 1906
Psectrotanypus Kieffer, 1909- Pseudobrillia
Pseudochironomus Malloch, 1915
Pseudodiamesa Goetghebuer, 1939- Pseudohydrobaenus
Pseudokiefferiella Zavrel, 1941
Pseudorthocladius Goetghebuer, 1932
Pseudosmittia Goetghebuer, 1932- Psilochironomus
Psilometriocnemus Sæther, 1969- Pterosis
- Qiniella
- Reissmesa
- Rheochlus
Rheocricotopus Brundin, 1956- Rheomus
- Rheomyia
Rheopelopia Fittkau, 1962
Rheosmittia Brundin, 1956
Rheotanytarsus Thienemann & Bause, 1913- Rhinocladius
- Riethia
Robackia Sæther, 1977
Saetheria Jackson, 1977
Saetheriella Halvorsen, 1982[21]- Saetherocladius
- Saetherocryptus
- Saetheromyia
- Saetherops
- Sasayusurika
Schineriella Murray & Fittkau, 1988- Semiocladius
- Setukoyusurika
- Seppia
Sergentia Kieffer, 1922- Shangomyia
- Shilovia
- Skusella
- Skutzia
Smittia Holmgren, 1869- Stackelbergina
- Stelechomyia
Stempellina Thienemann & Bause, 1913
Stempellinella Brundin, 1947
Stenochironomus Kieffer, 1919
Stictochironomus Kieffer, 1919- Stictocladius
- Stictotendipes
Stilocladius Rossaro, 1979- Sublettea
- Sublettiella
- Sumatendipes
Symbiocladius Kieffer, 1925
Sympotthastia Pagast, 1947
Syndiamesa Kieffer, 1918
Synendotendipes Grodhaus, 1987
Synorthocladius Thienemann, 1935- Tanypodinae
Tanypus Meigen, 1803- Tanytarsini
Tanytarsus van der Wulp, 1874- Tavastia
Telmatogeton Schiner, 1866
Telmatopelopia Fittkau, 1962- Telopelopia
- Tempisquitoneura
- Tethymyia
Thalassomya Schiner, 1856
Thalassosmittia Strenzke & Remmert, 1957
Thienemannia Kieffer, 1909
Thienemanniella Kieffer, 1911
Thienemannimyia Fittkau, 1957- Thienemanniola
- Tobachironomus
Tokunagaia Sæther, 1973- Tokunagayusurika
- Tokyobrillia
- Tosayusurika
- Townsia
- Toyamayusurika
Tribelos Townes, 1945- Trichochilus
- Trichosmittia
Trichotanypus Kieffer, 1906
Trissocladius Kieffer, 1908
Trissopelopia Kieffer, 1923- Trondia
- Tsudayusurika
- Tusimayusurika
Tvetenia Kieffer, 1922
Unniella Sæther, 1982
Usambaromyia Andersen & Sæther, 1994[22]
Virgatanytarsus Pinder, 1982- Vivacricotopus
- Wirthiella
Xenochironomus Kieffer, 1921
Xenopelopia Fittkau, 1962- Xestochironomus
- Xestotendipes
- Xiaomyia
- Xylotopus
- Yaeprimus
- Yaequartus
- Yaequintus
- Yaesecundus
- Yaetanytarsus
- Yaetertius
- Yama
Zalutschia Lipina, 1939
Zavrelia Kieffer, 1913
Zavreliella Kieffer, 1920
Zavrelimyia Fittkau, 1962- Zelandochlus
- Zhouomyia
- Zuluchironomus
References
^ abc Armitage, P. D.; Cranston, P. S.; Pinder, L. C. V. (1995). The Chironomidae: biology and ecology of non-biting midges. London: Chapman & Hall. ISBN 0-412-45260-X.
^ "Muckleheads[permanent dead link]" from Andre's Weather World (Andre Bernier, staff at WJW-TV), June 2, 2007.
^ "You don't love muffleheads, but Lake Erie does", Sandusky Register, May 24, 2010.
^ Galbincea, Barb, "Canadian Soldiers Invade Rocky River", The Plain Dealer, Cleveland.com, June 18, 2014, accessed June 3, 2015.
^ "Call Them Mayflies, Not June Bugs, Biologist Says: University of Windsor Professor Dispels Mayfly Myths", CBC News, CBC.ca, May 29, 2012, accessed June 3, 2015.
^ Chizzywinks are Blind Mosquitos by Dan Culbert of the University of Florida, August 17, 2005
^ W.P. Coffman and L.C. Ferrington Jr. 1996. Chironomidae. pp. 635-754. In: R.W. Merritt and K.W. Cummins, eds. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company.
^ Int Panis, L; Goddeeris, B.; Verheyen, R (1996). "On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera)". Hydrobiologia. 318: 61–67. doi:10.1007/BF00014132.
^ A. Ali. 1991. Perspectives on management of pestiferous Chironomidae (Diptera), an emerging global problem. Journal of the American Mosquito Control Association 7: 260-281.
^ Walker, I. R. 2001. Midges: Chironomidae and related Diptera. pp. 43-66, In: J. P. Smol, H. J. B. Birks, and W. M. Last (eds). Tracking Environmental Change Using Lake Sediments. Volume 4. Zoological Indicators. Kluwer Academic Publishers, Dordrecht.
^ González Medina A, Soriano Hernando Ó, Jiménez Ríos G (2015). "The Use of the Developmental Rate of the Aquatic Midge Chironomus riparius (Diptera, Chironomidae) in the Assessment of the Postsubmersion Interval". J.Forensic.Sci. 60 (3): 822–826. doi:10.1111/1556-4029.12707.
^ Kaiser, Tobias S.; Poehn, Birgit; Szkiba, David; Preussner, Marco; Sedlazeck, Fritz J.; Zrim, Alexander; Neumann, Tobias; Nguyen, Lam-Tung; Betancourt, Andrea J. "The genomic basis of circadian and circalunar timing adaptations in a midge". Nature. doi:10.1038/nature20151.
^ Cornette R, Kikawada T (June 2011). "The induction of anhydrobiosis in the sleeping chironomid: current status of our knowledge". IUBMB Life. 63 (6): 419–29. doi:10.1002/iub.463. PMID 21547992.
^ abc Gusev O, Nakahara Y, Vanyagina V, Malutina L, Cornette R, Sakashita T, Hamada N, Kikawada T, Kobayashi Y, Okuda T (2010). "Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: linkage with radioresistance". PLoS ONE. 5 (11): e14008. doi:10.1371/journal.pone.0014008. PMC 2982815 . PMID 21103355.
^ J.H. Epler. 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina Archived 2005-12-14 at the Wayback Machine.. North Carolina Department of Environment and Natural Resources.
^ Armitage, P., Cranston, P.S., and Pinder, L.C.V. (eds.) (1994) The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman and Hall, London, 572 pp.
^ Ekrem, Torbjørn. "Systematics and biogeography of Zavrelia, Afrozavrelia and Stempellinella (Diptera: Chironomidae)". Archived from the original on 2009-03-18. Retrieved 2009-04-30.
^ Makarchenko, Eugenyi A. (2005). "A new species of Arctodiamesa Makarchenko (Diptera: Chironomidae: Diamesinae) from the Russian Far East, with a key to known species of the genus" (PDF). Zootaxa. 1084: 59–64. Retrieved 2009-04-03.
^ Caldwell, Broughton A.; Soponis, Annelle R. (1982). "Hudsonimyia Parrishi, a New Species of Tanypodinae (Diptera: Chironomidae) from Georgia" (PDF). The Florida Entomologist. Lutz, FL, USA: Florida Entomological Society. 65 (4): 506–513. doi:10.2307/3494686. ISSN 0015-4040. JSTOR 3494686. Retrieved 2009-04-20.
^ Zorina, Oksana V. (2007). "Olecryptotendipes, a new genus in the Harnischia complex (Diptera: Chironomidae) from the Russian Far East" (PDF). In Andersen, T. Contributions to the Systematics and Ecology of Aquatic Diptera—A Tribute to Ole A. Sæther. The Caddis Press. pp. 347–351.
^ Halvorsen, Godtfred A. (1982). "Saetheriella amplicristata gen. n., sp. n., a new Orthocladiinae (Diptera: Chironomidae) from Tennessee". Aquatic Insects. Taylor & Francis. 4 (3): 131–136. doi:10.1080/01650428209361098. ISSN 1744-4152.
^ Andersen, Trond; Sæther, Ole A. (January 1994). "Usambaromyia nigrala gen. n., sp. n., and Usambaromyiinae, a new subfamily among the Chironomidae (Diptera)". Aquatic Insects. Taylor & Francis. 16 (1): 21–29. doi:10.1080/01650429409361531. ISSN 1744-4152.
External links
Wikispecies has information related to Chironomidae |
Wikimedia Commons has media related to Chironomidae. |
- The Chironomid Home Page
- Chironomidae and Water Beetles of Florida
- Chironomidae Research Group, University of Minnesota
- Family Chironomidae at Soil and Water Conservation Society of Metro Halifax
- Checklist of UK Recorded Chironomidae
- Chironomidae at Nomina Insecta Nearctica
- Chironomid Palaeoecology @ UBC Okanagan
- Chironomidae at Australian Faunal Directory
"Hydrilla tip mining midge". Featured Creatures. University of Florida Institute of Food and Agricultural Sciences.
Diptera.info Images
Clash Royale CLAN TAG#URR8PPP