防己科

Multi tool use
防己科
|
---|

from Koehler (1887)
|
科學分類
|
---|
界:
| 植物界
| 門:
| 被子植物门
| 綱:
| 双子叶植物纲
| 目:
| 毛茛目
| 科:
| Menispermaceae Juss. (1789)
|
|
属
|
---|
参见正文
|
防己科植物共有约71属450种,主要分布于热带和亚热带地区,但是在北美洲和东亚洲的温带地区也有一些种类。中国有20属约60种。本科植物有些种类的根可供药用,有些种类的藤可用于编织。
形态
- 大部分是攀缘或木质藤本植物。
- 单叶互生,无托叶,有时有掌状分裂。
花单性,雌雄异株,常排成聚伞花序或圆锥花序,萼片分裂,通常6枚,2~4轮,花瓣6枚,分离,很少合生;雄花的萼片常大于花瓣,雄蕊2枚以上,雌花通常有分离的心皮3~6枚,子房上位一室。
果实为核果或核果状,内果皮有皱纹,种子弯曲为马蹄形或肾形。
主要属
- Abuta
崖藤属 Albertisia
印度防己属 Anamirta
歪环防己属 Anisocycla
- Anomospermum
- Antizoma
古山龙属Arcangelisia
球果藤属Aspidocarya
- Beirnaertia
- Borismene
- Burasaia
- Calycocarpum
- Carronia
- Caryomene
- Chasmanthera
- Chlaenandra
谷树属 Chondrodendron
- Cionomene
锡生藤属Cissampelos
木防己属Cocculus
- Coscinium
- Curarea
轮环藤属Cyclea
- Dialytheca
|
西非防己属Dioscoreophyllum
秤钩风属Diploclisia
- Disciphania
- Elephantomene
藤枣属Eleutharrhena
天仙藤属Fibraurea
- Haematocarpus
- Hyperbaena
夜花藤属Hypserpa
- Jateorhiza
- Kolobopetalum
- Legnephora
- Leptoterantha
金果榄属Limacia
肾子藤属Limaciopsis
- Macrococculus
蝙蝠葛属Menispermum
- Odontocarya
- Orthogynium
- Orthomene
粉绿藤属Pachygone
连蕊藤属Parabaena
马来防己属Penianthus
细圆藤属Pericampylus
|
- Platytinospora
- Pleogyne
密花藤属Pycnarrhena
- Rhaptonema
- Rhigiocarya
- Sarcolophium
- Sarcopetalum
- Sciadotenia
风龙属Sinomenium
- Sphenocentrum
- Spirospermum
千金藤属Stephania
- Strychnopsis
- Synandropus
- Synclisia
- Syntriandrum
- Syrrheonema
- Telitoxicum
- Tiliacora
大叶藤属Tinomiscium
青牛胆属Tinospora
- Triclisia
- Ungulipetalum
|
外部链接
 | 维基共享资源中相关的多媒体资源:防己科
|
 | 维基物种中的分类信息:防己科
|
- 在L. Watson和M.J. Dallwitz (1992年)《有花植物分科》中的防己科
- 北美植物中的防己科
- NCBI分类法中的防己科
- CSDL分类中的防己科
WX,nZZevdVF12T7lrFcRVKy0,lJf1dX4sSxPT5dRks,zwt4C7I5E iUNPg N
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...