identify zip codes that fall within latitude and longitudinal coordinates
I have several data frames in R. The first data frame contains the computed convex hull of a set of lat and long coordinates by market (courtesy of chull in R). It looks like this:
MyGeo<- "Part of Chicago & Wisconsin"
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
dat <- data.frame(Longitude, Latitude, MyGeo)
The second has zip codes by their latitude and longitudinal coordinates (courtesy of the US census website). It looks like this:
CensuseZip <- c("SomeZipCode1","SomeZipCode2","SomeZipCode3","SomeZipCode4","SomeZipCode5","SomeZipCode6","SomeZipCode7")
Longitude2 <- c(-131.470425,-133.457924,-131.693453,-87.64957,-87.99734,-87.895,-88.0228)
Latitude2 <- c(55.138352,56.239062,56.370538,41.87485,42.0086,42.04957,41.81055)
cen <- data.frame(Longitude2, Latitude2, CensuseZip)
Now I believe the first data table provides me with a polygon, or a border, that I should be able to use to identify zip codes that fall within that border. Ideally, I would want to create a third data table that looks something like this:
Longitude2 Latitude2 CensusZip MyGeo
-131.470425 55.138352 SomeZipCode1
-133.457924 56.239062 SomeZipCode2
-131.693453 56.370538 SomeZipCode3
-87.64957 41.87485 SomeZipCode4 Part of Chicago & Wisconsin
-87.99734 42.0086 SomeZipCode5 Part of Chicago & Wisconsin
-87.895 42.04957 SomeZipCode6 Part of Chicago & Wisconsin
-88.0228 41.81055 SomeZipCode7 Part of Chicago & Wisconsin
In essence, I am looking to identify all the zip codes that fall between the blue (see clickable image below) long and lat points. While it is visualized below, I am actually looking for the table described above.
However... I am having trouble doing this... I have tried using the below packages and script:
library(rgeos)
library(sp)
library(rgdal)
coordinates(dat) <- ~ Longitude + Latitude
coordinates(cen) <- ~ Longitude2 + Latitude2
over(cen, dat)
but I receive all NA
s.
r coordinates polygon geocoding latitude-longitude
add a comment |
I have several data frames in R. The first data frame contains the computed convex hull of a set of lat and long coordinates by market (courtesy of chull in R). It looks like this:
MyGeo<- "Part of Chicago & Wisconsin"
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
dat <- data.frame(Longitude, Latitude, MyGeo)
The second has zip codes by their latitude and longitudinal coordinates (courtesy of the US census website). It looks like this:
CensuseZip <- c("SomeZipCode1","SomeZipCode2","SomeZipCode3","SomeZipCode4","SomeZipCode5","SomeZipCode6","SomeZipCode7")
Longitude2 <- c(-131.470425,-133.457924,-131.693453,-87.64957,-87.99734,-87.895,-88.0228)
Latitude2 <- c(55.138352,56.239062,56.370538,41.87485,42.0086,42.04957,41.81055)
cen <- data.frame(Longitude2, Latitude2, CensuseZip)
Now I believe the first data table provides me with a polygon, or a border, that I should be able to use to identify zip codes that fall within that border. Ideally, I would want to create a third data table that looks something like this:
Longitude2 Latitude2 CensusZip MyGeo
-131.470425 55.138352 SomeZipCode1
-133.457924 56.239062 SomeZipCode2
-131.693453 56.370538 SomeZipCode3
-87.64957 41.87485 SomeZipCode4 Part of Chicago & Wisconsin
-87.99734 42.0086 SomeZipCode5 Part of Chicago & Wisconsin
-87.895 42.04957 SomeZipCode6 Part of Chicago & Wisconsin
-88.0228 41.81055 SomeZipCode7 Part of Chicago & Wisconsin
In essence, I am looking to identify all the zip codes that fall between the blue (see clickable image below) long and lat points. While it is visualized below, I am actually looking for the table described above.
However... I am having trouble doing this... I have tried using the below packages and script:
library(rgeos)
library(sp)
library(rgdal)
coordinates(dat) <- ~ Longitude + Latitude
coordinates(cen) <- ~ Longitude2 + Latitude2
over(cen, dat)
but I receive all NA
s.
r coordinates polygon geocoding latitude-longitude
add a comment |
I have several data frames in R. The first data frame contains the computed convex hull of a set of lat and long coordinates by market (courtesy of chull in R). It looks like this:
MyGeo<- "Part of Chicago & Wisconsin"
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
dat <- data.frame(Longitude, Latitude, MyGeo)
The second has zip codes by their latitude and longitudinal coordinates (courtesy of the US census website). It looks like this:
CensuseZip <- c("SomeZipCode1","SomeZipCode2","SomeZipCode3","SomeZipCode4","SomeZipCode5","SomeZipCode6","SomeZipCode7")
Longitude2 <- c(-131.470425,-133.457924,-131.693453,-87.64957,-87.99734,-87.895,-88.0228)
Latitude2 <- c(55.138352,56.239062,56.370538,41.87485,42.0086,42.04957,41.81055)
cen <- data.frame(Longitude2, Latitude2, CensuseZip)
Now I believe the first data table provides me with a polygon, or a border, that I should be able to use to identify zip codes that fall within that border. Ideally, I would want to create a third data table that looks something like this:
Longitude2 Latitude2 CensusZip MyGeo
-131.470425 55.138352 SomeZipCode1
-133.457924 56.239062 SomeZipCode2
-131.693453 56.370538 SomeZipCode3
-87.64957 41.87485 SomeZipCode4 Part of Chicago & Wisconsin
-87.99734 42.0086 SomeZipCode5 Part of Chicago & Wisconsin
-87.895 42.04957 SomeZipCode6 Part of Chicago & Wisconsin
-88.0228 41.81055 SomeZipCode7 Part of Chicago & Wisconsin
In essence, I am looking to identify all the zip codes that fall between the blue (see clickable image below) long and lat points. While it is visualized below, I am actually looking for the table described above.
However... I am having trouble doing this... I have tried using the below packages and script:
library(rgeos)
library(sp)
library(rgdal)
coordinates(dat) <- ~ Longitude + Latitude
coordinates(cen) <- ~ Longitude2 + Latitude2
over(cen, dat)
but I receive all NA
s.
r coordinates polygon geocoding latitude-longitude
I have several data frames in R. The first data frame contains the computed convex hull of a set of lat and long coordinates by market (courtesy of chull in R). It looks like this:
MyGeo<- "Part of Chicago & Wisconsin"
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
dat <- data.frame(Longitude, Latitude, MyGeo)
The second has zip codes by their latitude and longitudinal coordinates (courtesy of the US census website). It looks like this:
CensuseZip <- c("SomeZipCode1","SomeZipCode2","SomeZipCode3","SomeZipCode4","SomeZipCode5","SomeZipCode6","SomeZipCode7")
Longitude2 <- c(-131.470425,-133.457924,-131.693453,-87.64957,-87.99734,-87.895,-88.0228)
Latitude2 <- c(55.138352,56.239062,56.370538,41.87485,42.0086,42.04957,41.81055)
cen <- data.frame(Longitude2, Latitude2, CensuseZip)
Now I believe the first data table provides me with a polygon, or a border, that I should be able to use to identify zip codes that fall within that border. Ideally, I would want to create a third data table that looks something like this:
Longitude2 Latitude2 CensusZip MyGeo
-131.470425 55.138352 SomeZipCode1
-133.457924 56.239062 SomeZipCode2
-131.693453 56.370538 SomeZipCode3
-87.64957 41.87485 SomeZipCode4 Part of Chicago & Wisconsin
-87.99734 42.0086 SomeZipCode5 Part of Chicago & Wisconsin
-87.895 42.04957 SomeZipCode6 Part of Chicago & Wisconsin
-88.0228 41.81055 SomeZipCode7 Part of Chicago & Wisconsin
In essence, I am looking to identify all the zip codes that fall between the blue (see clickable image below) long and lat points. While it is visualized below, I am actually looking for the table described above.
However... I am having trouble doing this... I have tried using the below packages and script:
library(rgeos)
library(sp)
library(rgdal)
coordinates(dat) <- ~ Longitude + Latitude
coordinates(cen) <- ~ Longitude2 + Latitude2
over(cen, dat)
but I receive all NA
s.
r coordinates polygon geocoding latitude-longitude
r coordinates polygon geocoding latitude-longitude
edited Nov 14 '18 at 2:48
Jessie
asked Nov 14 '18 at 2:40
JessieJessie
133
133
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
I use library(sf)
to solve this type of point-in-polygon problem (sf
is the successor to sp
).
The function sf::st_intersection()
gives you the intersection of two sf
objects. In your case you can construct separate POLYGON and POINT sf objects.
library(sf)
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
## closing the polygon
Longitude[length(Longitude) + 1] <- Longitude[1]
Latitude[length(Latitude) + 1] <- Latitude[1]
## construct sf POLYGON
sf_poly <- sf::st_sf( geometry = sf::st_sfc( sf::st_polygon( x = list(matrix(c(Longitude, Latitude), ncol = 2)))) )
## construct sf POINT
sf_points <- sf::st_as_sf( cen, coords = c("Longitude2", "Latitude2"))
sf::st_intersection(sf_points, sf_poly)
# Simple feature collection with 4 features and 1 field
# geometry type: POINT
# dimension: XY
# bbox: xmin: -88.0228 ymin: 41.81055 xmax: -87.64957 ymax: 42.04957
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry
# 4 SomeZipCode4 POINT (-87.64957 41.87485)
# 5 SomeZipCode5 POINT (-87.99734 42.0086)
# 6 SomeZipCode6 POINT (-87.895 42.04957)
# 7 SomeZipCode7 POINT (-88.0228 41.81055)
# Warning message:
# attribute variables are assumed to be spatially constant throughout all geometries
The result is all the points which are inside the polygon
You can also use sf::st_join(sf_poly, sf_points)
to give the same result
And, the function sf::st_intersects(sf_points, sf_poly)
will return a list saying whether the given POINT is inside the polygon
sf::st_intersects(sf_points, sf_poly)
# Sparse geometry binary predicate list of length 7, where the predicate was `intersects'
# 1: (empty)
# 2: (empty)
# 3: (empty)
# 4: 1
# 5: 1
# 6: 1
# 7: 1
Which you can use as an index / identifier of the original sf_points
object to add a new column on
is_in <- sf::st_intersects(sf_points, sf_poly)
sf_points$inside_polygon <- as.logical(is_in)
sf_points
# Simple feature collection with 7 features and 2 fields
# geometry type: POINT
# dimension: XY
# bbox: xmin: -133.4579 ymin: 41.81055 xmax: -87.64957 ymax: 56.37054
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry inside_polygon
# 1 SomeZipCode1 POINT (-131.4704 55.13835) NA
# 2 SomeZipCode2 POINT (-133.4579 56.23906) NA
# 3 SomeZipCode3 POINT (-131.6935 56.37054) NA
# 4 SomeZipCode4 POINT (-87.64957 41.87485) TRUE
# 5 SomeZipCode5 POINT (-87.99734 42.0086) TRUE
# 6 SomeZipCode6 POINT (-87.895 42.04957) TRUE
# 7 SomeZipCode7 POINT (-88.0228 41.81055) TRUE
I am actually not getting the results I would expect with this... For example I have 7 data points -78.93477 34.60786 -78.33281 35.48983 -78.09446 34.23414 -77.97638 35.791 -77.88063 34.22169 -77.28389 35.53175 -76.75031 34.73785 that I am using for my polygon and for some reason the next data point is not falling in the polygon -77.58959 34.87893
– Jessie
Nov 16 '18 at 17:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53292423%2fidentify-zip-codes-that-fall-within-latitude-and-longitudinal-coordinates%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I use library(sf)
to solve this type of point-in-polygon problem (sf
is the successor to sp
).
The function sf::st_intersection()
gives you the intersection of two sf
objects. In your case you can construct separate POLYGON and POINT sf objects.
library(sf)
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
## closing the polygon
Longitude[length(Longitude) + 1] <- Longitude[1]
Latitude[length(Latitude) + 1] <- Latitude[1]
## construct sf POLYGON
sf_poly <- sf::st_sf( geometry = sf::st_sfc( sf::st_polygon( x = list(matrix(c(Longitude, Latitude), ncol = 2)))) )
## construct sf POINT
sf_points <- sf::st_as_sf( cen, coords = c("Longitude2", "Latitude2"))
sf::st_intersection(sf_points, sf_poly)
# Simple feature collection with 4 features and 1 field
# geometry type: POINT
# dimension: XY
# bbox: xmin: -88.0228 ymin: 41.81055 xmax: -87.64957 ymax: 42.04957
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry
# 4 SomeZipCode4 POINT (-87.64957 41.87485)
# 5 SomeZipCode5 POINT (-87.99734 42.0086)
# 6 SomeZipCode6 POINT (-87.895 42.04957)
# 7 SomeZipCode7 POINT (-88.0228 41.81055)
# Warning message:
# attribute variables are assumed to be spatially constant throughout all geometries
The result is all the points which are inside the polygon
You can also use sf::st_join(sf_poly, sf_points)
to give the same result
And, the function sf::st_intersects(sf_points, sf_poly)
will return a list saying whether the given POINT is inside the polygon
sf::st_intersects(sf_points, sf_poly)
# Sparse geometry binary predicate list of length 7, where the predicate was `intersects'
# 1: (empty)
# 2: (empty)
# 3: (empty)
# 4: 1
# 5: 1
# 6: 1
# 7: 1
Which you can use as an index / identifier of the original sf_points
object to add a new column on
is_in <- sf::st_intersects(sf_points, sf_poly)
sf_points$inside_polygon <- as.logical(is_in)
sf_points
# Simple feature collection with 7 features and 2 fields
# geometry type: POINT
# dimension: XY
# bbox: xmin: -133.4579 ymin: 41.81055 xmax: -87.64957 ymax: 56.37054
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry inside_polygon
# 1 SomeZipCode1 POINT (-131.4704 55.13835) NA
# 2 SomeZipCode2 POINT (-133.4579 56.23906) NA
# 3 SomeZipCode3 POINT (-131.6935 56.37054) NA
# 4 SomeZipCode4 POINT (-87.64957 41.87485) TRUE
# 5 SomeZipCode5 POINT (-87.99734 42.0086) TRUE
# 6 SomeZipCode6 POINT (-87.895 42.04957) TRUE
# 7 SomeZipCode7 POINT (-88.0228 41.81055) TRUE
I am actually not getting the results I would expect with this... For example I have 7 data points -78.93477 34.60786 -78.33281 35.48983 -78.09446 34.23414 -77.97638 35.791 -77.88063 34.22169 -77.28389 35.53175 -76.75031 34.73785 that I am using for my polygon and for some reason the next data point is not falling in the polygon -77.58959 34.87893
– Jessie
Nov 16 '18 at 17:36
add a comment |
I use library(sf)
to solve this type of point-in-polygon problem (sf
is the successor to sp
).
The function sf::st_intersection()
gives you the intersection of two sf
objects. In your case you can construct separate POLYGON and POINT sf objects.
library(sf)
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
## closing the polygon
Longitude[length(Longitude) + 1] <- Longitude[1]
Latitude[length(Latitude) + 1] <- Latitude[1]
## construct sf POLYGON
sf_poly <- sf::st_sf( geometry = sf::st_sfc( sf::st_polygon( x = list(matrix(c(Longitude, Latitude), ncol = 2)))) )
## construct sf POINT
sf_points <- sf::st_as_sf( cen, coords = c("Longitude2", "Latitude2"))
sf::st_intersection(sf_points, sf_poly)
# Simple feature collection with 4 features and 1 field
# geometry type: POINT
# dimension: XY
# bbox: xmin: -88.0228 ymin: 41.81055 xmax: -87.64957 ymax: 42.04957
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry
# 4 SomeZipCode4 POINT (-87.64957 41.87485)
# 5 SomeZipCode5 POINT (-87.99734 42.0086)
# 6 SomeZipCode6 POINT (-87.895 42.04957)
# 7 SomeZipCode7 POINT (-88.0228 41.81055)
# Warning message:
# attribute variables are assumed to be spatially constant throughout all geometries
The result is all the points which are inside the polygon
You can also use sf::st_join(sf_poly, sf_points)
to give the same result
And, the function sf::st_intersects(sf_points, sf_poly)
will return a list saying whether the given POINT is inside the polygon
sf::st_intersects(sf_points, sf_poly)
# Sparse geometry binary predicate list of length 7, where the predicate was `intersects'
# 1: (empty)
# 2: (empty)
# 3: (empty)
# 4: 1
# 5: 1
# 6: 1
# 7: 1
Which you can use as an index / identifier of the original sf_points
object to add a new column on
is_in <- sf::st_intersects(sf_points, sf_poly)
sf_points$inside_polygon <- as.logical(is_in)
sf_points
# Simple feature collection with 7 features and 2 fields
# geometry type: POINT
# dimension: XY
# bbox: xmin: -133.4579 ymin: 41.81055 xmax: -87.64957 ymax: 56.37054
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry inside_polygon
# 1 SomeZipCode1 POINT (-131.4704 55.13835) NA
# 2 SomeZipCode2 POINT (-133.4579 56.23906) NA
# 3 SomeZipCode3 POINT (-131.6935 56.37054) NA
# 4 SomeZipCode4 POINT (-87.64957 41.87485) TRUE
# 5 SomeZipCode5 POINT (-87.99734 42.0086) TRUE
# 6 SomeZipCode6 POINT (-87.895 42.04957) TRUE
# 7 SomeZipCode7 POINT (-88.0228 41.81055) TRUE
I am actually not getting the results I would expect with this... For example I have 7 data points -78.93477 34.60786 -78.33281 35.48983 -78.09446 34.23414 -77.97638 35.791 -77.88063 34.22169 -77.28389 35.53175 -76.75031 34.73785 that I am using for my polygon and for some reason the next data point is not falling in the polygon -77.58959 34.87893
– Jessie
Nov 16 '18 at 17:36
add a comment |
I use library(sf)
to solve this type of point-in-polygon problem (sf
is the successor to sp
).
The function sf::st_intersection()
gives you the intersection of two sf
objects. In your case you can construct separate POLYGON and POINT sf objects.
library(sf)
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
## closing the polygon
Longitude[length(Longitude) + 1] <- Longitude[1]
Latitude[length(Latitude) + 1] <- Latitude[1]
## construct sf POLYGON
sf_poly <- sf::st_sf( geometry = sf::st_sfc( sf::st_polygon( x = list(matrix(c(Longitude, Latitude), ncol = 2)))) )
## construct sf POINT
sf_points <- sf::st_as_sf( cen, coords = c("Longitude2", "Latitude2"))
sf::st_intersection(sf_points, sf_poly)
# Simple feature collection with 4 features and 1 field
# geometry type: POINT
# dimension: XY
# bbox: xmin: -88.0228 ymin: 41.81055 xmax: -87.64957 ymax: 42.04957
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry
# 4 SomeZipCode4 POINT (-87.64957 41.87485)
# 5 SomeZipCode5 POINT (-87.99734 42.0086)
# 6 SomeZipCode6 POINT (-87.895 42.04957)
# 7 SomeZipCode7 POINT (-88.0228 41.81055)
# Warning message:
# attribute variables are assumed to be spatially constant throughout all geometries
The result is all the points which are inside the polygon
You can also use sf::st_join(sf_poly, sf_points)
to give the same result
And, the function sf::st_intersects(sf_points, sf_poly)
will return a list saying whether the given POINT is inside the polygon
sf::st_intersects(sf_points, sf_poly)
# Sparse geometry binary predicate list of length 7, where the predicate was `intersects'
# 1: (empty)
# 2: (empty)
# 3: (empty)
# 4: 1
# 5: 1
# 6: 1
# 7: 1
Which you can use as an index / identifier of the original sf_points
object to add a new column on
is_in <- sf::st_intersects(sf_points, sf_poly)
sf_points$inside_polygon <- as.logical(is_in)
sf_points
# Simple feature collection with 7 features and 2 fields
# geometry type: POINT
# dimension: XY
# bbox: xmin: -133.4579 ymin: 41.81055 xmax: -87.64957 ymax: 56.37054
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry inside_polygon
# 1 SomeZipCode1 POINT (-131.4704 55.13835) NA
# 2 SomeZipCode2 POINT (-133.4579 56.23906) NA
# 3 SomeZipCode3 POINT (-131.6935 56.37054) NA
# 4 SomeZipCode4 POINT (-87.64957 41.87485) TRUE
# 5 SomeZipCode5 POINT (-87.99734 42.0086) TRUE
# 6 SomeZipCode6 POINT (-87.895 42.04957) TRUE
# 7 SomeZipCode7 POINT (-88.0228 41.81055) TRUE
I use library(sf)
to solve this type of point-in-polygon problem (sf
is the successor to sp
).
The function sf::st_intersection()
gives you the intersection of two sf
objects. In your case you can construct separate POLYGON and POINT sf objects.
library(sf)
Longitude <- c(-90.31914, -90.61911, -89.37842, -88.0988, -87.44875)
Latitude <- c(38.45781, 38.80097, 43.07961, 43.0624,41.49182)
## closing the polygon
Longitude[length(Longitude) + 1] <- Longitude[1]
Latitude[length(Latitude) + 1] <- Latitude[1]
## construct sf POLYGON
sf_poly <- sf::st_sf( geometry = sf::st_sfc( sf::st_polygon( x = list(matrix(c(Longitude, Latitude), ncol = 2)))) )
## construct sf POINT
sf_points <- sf::st_as_sf( cen, coords = c("Longitude2", "Latitude2"))
sf::st_intersection(sf_points, sf_poly)
# Simple feature collection with 4 features and 1 field
# geometry type: POINT
# dimension: XY
# bbox: xmin: -88.0228 ymin: 41.81055 xmax: -87.64957 ymax: 42.04957
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry
# 4 SomeZipCode4 POINT (-87.64957 41.87485)
# 5 SomeZipCode5 POINT (-87.99734 42.0086)
# 6 SomeZipCode6 POINT (-87.895 42.04957)
# 7 SomeZipCode7 POINT (-88.0228 41.81055)
# Warning message:
# attribute variables are assumed to be spatially constant throughout all geometries
The result is all the points which are inside the polygon
You can also use sf::st_join(sf_poly, sf_points)
to give the same result
And, the function sf::st_intersects(sf_points, sf_poly)
will return a list saying whether the given POINT is inside the polygon
sf::st_intersects(sf_points, sf_poly)
# Sparse geometry binary predicate list of length 7, where the predicate was `intersects'
# 1: (empty)
# 2: (empty)
# 3: (empty)
# 4: 1
# 5: 1
# 6: 1
# 7: 1
Which you can use as an index / identifier of the original sf_points
object to add a new column on
is_in <- sf::st_intersects(sf_points, sf_poly)
sf_points$inside_polygon <- as.logical(is_in)
sf_points
# Simple feature collection with 7 features and 2 fields
# geometry type: POINT
# dimension: XY
# bbox: xmin: -133.4579 ymin: 41.81055 xmax: -87.64957 ymax: 56.37054
# epsg (SRID): NA
# proj4string: NA
# CensuseZip geometry inside_polygon
# 1 SomeZipCode1 POINT (-131.4704 55.13835) NA
# 2 SomeZipCode2 POINT (-133.4579 56.23906) NA
# 3 SomeZipCode3 POINT (-131.6935 56.37054) NA
# 4 SomeZipCode4 POINT (-87.64957 41.87485) TRUE
# 5 SomeZipCode5 POINT (-87.99734 42.0086) TRUE
# 6 SomeZipCode6 POINT (-87.895 42.04957) TRUE
# 7 SomeZipCode7 POINT (-88.0228 41.81055) TRUE
edited Nov 14 '18 at 3:38
answered Nov 14 '18 at 3:24
SymbolixAUSymbolixAU
16.3k32986
16.3k32986
I am actually not getting the results I would expect with this... For example I have 7 data points -78.93477 34.60786 -78.33281 35.48983 -78.09446 34.23414 -77.97638 35.791 -77.88063 34.22169 -77.28389 35.53175 -76.75031 34.73785 that I am using for my polygon and for some reason the next data point is not falling in the polygon -77.58959 34.87893
– Jessie
Nov 16 '18 at 17:36
add a comment |
I am actually not getting the results I would expect with this... For example I have 7 data points -78.93477 34.60786 -78.33281 35.48983 -78.09446 34.23414 -77.97638 35.791 -77.88063 34.22169 -77.28389 35.53175 -76.75031 34.73785 that I am using for my polygon and for some reason the next data point is not falling in the polygon -77.58959 34.87893
– Jessie
Nov 16 '18 at 17:36
I am actually not getting the results I would expect with this... For example I have 7 data points -78.93477 34.60786 -78.33281 35.48983 -78.09446 34.23414 -77.97638 35.791 -77.88063 34.22169 -77.28389 35.53175 -76.75031 34.73785 that I am using for my polygon and for some reason the next data point is not falling in the polygon -77.58959 34.87893
– Jessie
Nov 16 '18 at 17:36
I am actually not getting the results I would expect with this... For example I have 7 data points -78.93477 34.60786 -78.33281 35.48983 -78.09446 34.23414 -77.97638 35.791 -77.88063 34.22169 -77.28389 35.53175 -76.75031 34.73785 that I am using for my polygon and for some reason the next data point is not falling in the polygon -77.58959 34.87893
– Jessie
Nov 16 '18 at 17:36
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53292423%2fidentify-zip-codes-that-fall-within-latitude-and-longitudinal-coordinates%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown