巴尔赫

Multi tool use 巴尔赫 بلخ Βάχλο
|
---|
|
坐标:36°45′N 66°54′E / 36.750°N 66.900°E / 36.750; 66.900坐标:36°45′N 66°54′E / 36.750°N 66.900°E / 36.750; 66.900
|
國家 |
阿富汗
|
---|
省 | 巴尔赫省
|
---|
海拔
| 365 米(1,198 英尺) |
---|
人口(2006年)
|
---|
• 總計 | 77,000 |
---|
巴尔赫(波斯語:بلخ、巴克特里亞語:ẞaxlɔ) ,又称八剌黑、薄提、缚喝、薄知、薄渴罗、巴尔黑、白勒黑[1]、巴里黑、藍氏城[2]、班城等,是阿富汗巴尔赫省内一个小镇,在首府马扎里沙里夫(مزار شرىف)西北20公里处。巴尔赫古城乃是阿富汗最古老的一遗址,临巴尔赫河的河口,海拔约365米。
古时巴尔赫城曾是波斯东部呼罗珊省(جراسان)内的一个城市,是祆教的中心,传说祆教的创立者琐罗亚斯德死于巴尔赫城。這裹也是阿富汗佛教中心。 《回回館譯語》中称白勒黑。[1][3]
历史
- 古代巴尔赫乃是大夏国首都薄知(Bactra)。在中文古典书籍中又作“薄提”、“缚喝”
- 《魏书·西域传》:“薄知国,都薄知城,在伽色尼南……多五果”。“吐火罗国……国中有薄提城,周匝六十里,城南有西流大水,名汉楼河,土宜五谷,有好马、驼、骡。其王曾遣使朝贡”
北魏宣武帝永平二年(509年),薄提国隶属于嚈噠,二国合贡白象一只。
- 7世纪中,阿拉伯人侵略波斯,波斯国王亚兹得格尔德三世(Yazdgerd III)曾逃往巴尔赫避难。
- 唐玄奘《大唐西域記》作“缚喝国”:“缚喝国。东西八百余里。南北四百余里。北临缚刍河。国大都城周二十余里。人皆谓之小王舍城也。其城虽固居人甚少。土地所产物类尤多。水陆诸花难以备举。伽蓝百有余所。僧徒三千余人。并皆习学小乘法教。[4]"
义净 《大唐西域求法高僧传》作“薄渴罗”。唐高僧玄照曾路过薄渴罗,到纳婆毗诃罗国(Navavihara)
- 1221年成吉思汗侵占“巴里黑”(即巴尔赫),并屠杀掉了城市中的百万人口。
- 14世纪後期,巴尔赫又一次遭帖木儿的屠城浩劫。
明朝永乐十一年(1413年)吏部验封司员外郎陈诚等出使西域,曾到过八剌黑(巴尔赫),“城周围十余里,居平川无险要……田地宽广,食物丰饶”。当时帖木儿帝国国王沙哈鲁派遣一子为八剌黑城总督,在他的管理下,八剌黑城相当繁荣,西南各国商人聚居此城中,运来的番货很多。
参考文献
^ 1.01.1 華夷譯語(六) (中文).
^ 胡辣羊蹄 (编). 西域古国古都城邑 续三. 2008-04-29 (中文(简体)).
^ http://www.huizucn.org/article-16-2.html[永久失效連結]
^ 1985年中華書局,僧玄奘原著 季羨林等校注《大唐西域記校注》 卷第一 缚喝国 115 ISBN 7-101-00644-2
- (唐)义净 《大唐西域求法高僧传·玄照传》
- (明)陈诚著《西域番国志·八剌黑》 周连宽校注 2000 中华书局 ISBN 7-101-02058-5/K
lXbluxVZHuQ021gxaIFFC9,FxNR6PupF5xzK9ja1lbd oyvToQaagrSq,o9,zTfAk,kLgVYphV,5 dFWZp05o8vbxYtbsUj,HfIPc4 llyY
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...