Template:酯酶类

Multi tool use
水解酶:酯酶类(EC 3.1)
|
---|
| 3.1.1:羧酸酯水解酶类
| 胆碱酯酶(乙酰胆碱酯酶、 丁酰胆碱酯酶) · 果胶酯酶 · 6-磷酸葡萄糖酸内酯酶 · 血小板活化因子乙酰水解酶 脂肪酶(胆盐依赖性脂酶、胃脂肪酶/舌脂肪酶、胰脂肪酶、溶酶体酸性脂肪酶、激素敏感性脂肪酶、内皮脂肪酶、肝脂肪酶、脂蛋白脂肪酶、单酰基甘油脂肪酶、二酰基甘油脂肪酶)
磷脂酶(A1、A2、B)
角质酶 · PET酶 |
---|
| 3.1.2:硫酯水解酶类
| 棕榈酰蛋白硫酯酶 · 泛素C端水解酶L1
|
---|
| 磷酸酶 |
3.1.3: 磷酸单酯水解酶类
| 碱性磷酸酶(ALPI、ALPL、ALPP) · 酸性磷酸酶(前列腺酸性磷酸酶)/抗酒石酸酸性磷酸酶/紫色酸性磷酸酶 · 核苷酸酶 · 葡萄糖6-磷酸酶 · 果糖1,6-二磷酸酶 · 钙调磷酸酶 · 磷蛋白磷酸酯酶(PP2) · OCRL · 丙酮酸脱氢酶磷酸酶 · 磷酸果糖激酶2 · PTEN · 植酸酶 · 磷酸肌醇磷酸酶(IMPA1) 磷蛋白磷酸酶:蛋白酪氨酸磷酸酶 · 蛋白丝氨酸/苏氨酸磷酸酶 · 双特异性磷酸酶
|
---|
| 3.1.4:磷酸二酯水解酶类
| 自分泌运动因子 · 磷脂酶(磷脂酶C、磷脂酶D) · 鞘磷脂磷酸二酯酶(1) · PDE1 · PDE2 · PDE3 · PDE4A/PDE4B · PDE5 · 卵磷脂酶(产气荚膜梭菌α毒素) · 环核苷酸磷酸二酯酶
|
---|
|
---|
| 3.1.6:硫酸酯酶类
| 芳基硫酸酯酶(芳基硫酸酯酶A、芳基硫酸酯酶B、芳基硫酸酯酶E、类固醇硫酸酯酶) · 氨基半乳糖-6硫酸酯酶 · 艾杜糖醛酸-2-硫酸酯酶 · N-乙酰氨基葡萄糖-6-硫酸酯酶
|
---|
| 核酸酶(包含 脱氧核糖核酸酶 及核糖核酸酶) |
3.1.11-3.1.16:外切酶
|
脱氧核糖核酸外切酶 | RecBCD |
---|
| 核糖核酸外切酶 | 寡核苷酸酶 |
---|
|
---|
| 3.1.21-3.1.31:内切酶
|
脱氧核糖核酸内切酶 | 脱氧核糖核酸内切酶Ⅰ · 脱氧核糖核酸内切酶Ⅱ · 脱氧核糖核酸内切酶Ⅳ · 限制性内切酶 · UvrABC核酸内切酶
|
---|
| 核糖核酸内切酶 | RNaseⅢ · RNase H(1、2A、2B、2C) · RNase P · RNase A (1、2、3、4/5) · RNase T1 · RNA誘導沉默複合體
|
---|
| 作用于脱氧核糖核酸或核糖核酸 | 曲霉属核酸酶S1 · 微球菌核酸酶
|
---|
|
---|
|
---|
|
EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22 · 2.1/2/3/4/5/6/7(2.7.10/11-12)/8/9 · 3.1/2/3/4(3.4.21/22/23/24)/5/6/7/8/9/10/11/12/13 ·
4.1/2/3/4/5/6 · 5.1/2/3/4/5/99 · 6.1-3/4/5-6 |
|
YOSDgnjyx4L9XYG5,d8Phxpl2jlkI,idXHciLvm7mcTM3hetR2apq3IId,Xc
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...