燒鵝

Multi tool usebody.skin-minerva .mw-parser-output table.infobox captiontext-align:center
烧鹅
 原隻燒鵝
|
起源地 | 中國、 歐洲、中東
|
---|
主要成分 | 鵝
|
---|
燒鵝
|
简化字 | 烧鹅
|
---|
繁体字 | 燒鵝
|
---|
字面意思 | roast goose |
---|
标音 |
---|
官话 |
---|
- 汉语拼音
| shāo é
|
---|
粤语 |
---|
- 粵拼
| siu1 ngo4*2
|
---|
- 耶魯拼音
| sīu ngó
|
---|
|
烧鹅是燒味的一種,是把塗满调味料的鹅,挂进特製的炭炉裏用木炭高温烧烤出来的食物,以皮脆有光澤,肉汁多而不帶腥味為上品,通常配以酸梅醬食用。
各地燒鵝
南京燒鵝
南京佈滿大街小巷的滷菜店都有燒鴨、燒鵝賣。燒鵝和燒鴨做法差不多。後來傳入廣東。
香港燒鵝
香港的燒鵝在製法上無甚分別,但由於口味等原因,以燒製燒鵝的方法同樣用以製作燒鴨,在香港燒鴨和燒鵝都十分馳名。
香港以燒鵝馳名的食肆,包括中環鏞記及新界深井一帶多家燒鵝酒家。
古井烧鹅
主条目:古井烧鹅
古井烧鹅是广东新会市古井镇制作的一种烧鹅口味,味道独特,在广东名气很大,几乎是粤菜烧腊的代表。新會市古井镇也将“古井烧鹅”作为吸引食客的广告语,以期招揽更多珠三角游客访问古井镇。古井烧鹅原本是利用遗弃古水井作为烤制设施而烧烤成的鹅,现今极少用,取而代之的是现代化的煤气、电力烘烤炉。
烧鹅造假
坊间有将烧鸭经过处理后冒充烧鹅的传闻。在香港,有食肆因為以燒鴨冒充燒鵝而被判罰款[1]。
參見
 | 维基共享资源中相关的多媒体资源:燒鵝
|
外部連結
^ 蓮香樓燒鴨充鵝 違商品例罰$8,000. 香港蘋果日報. 2014-03-20 (中文(香港)).
粤菜
|
---|
| 主菜 | - 鮑魚
- 燕窩
- 羅漢齋
- 海皇羹
- 蒸水蛋
- 粥
- 炸子雞
- 龍虎鳳
- 芙蓉蛋
- 打甂炉
- 西柠鸡
- 猪脚姜
- 海鮮雀巢
- 魚翅
- 蛇咬雞
- 豉油雞
- 蒸肉饼
- 什錦
- 烧乳猪
- 咕嚕肉
- 白灼虾
- 白切雞
- 云吞面
- 揚州炒飯
|
---|
| 主要飲茶點心
| - 杏仁豆腐
- 金钱肚
- 叉燒包
- 凤爪
- 椰汁糕
- 蝦餃
- 煎堆
- 饺子
- 糯米雞
- 年糕
- 牛脷酥
- 腸粉
- 燒賣
- 春卷
- 山竹牛肉
- 瑞士雞翼
- 芋頭糕
- 芋頭角
- 腐皮卷
- 蘿蔔糕
- 馬蹄糕
- 油角
- 油条
- 炸兩
|
---|
| 燒味 | |
---|
| 甜品和糕点 | - 杏仁饼
- 鸡蛋卷
- 啄啄糖
- 豆腐花
- 薑汁撞奶
- 糯米糍
- 月饼
- 红豆糕
- 紅豆沙
- 腸仔包
- 糖水
- 白糖糕
|
---|
| 醬料 | |
---|
| 材料 | - 牛肉丸
- 黑豆沙
- 陳皮
- 乾貝
- 豆豉
- 鱼丸
- 魚片
- 田鸡腿
- 皇帝菜
- 芥兰
- 濑尿虾
- 通菜
- 猪红
- 豬耳
- 蝦球
- 油菜籽
- 生麵
- 海參
- 沙河粉
- 蝦子麵
- 排骨
- 酸菜
- 腐皮
- 雲吞
- 伊麵
- 幼面
- 榨菜
|
---|
| 其他 | |
---|
| - 粵式茶樓
- 粤式酒樓
- 广州菜
- 順德菜
- 客家菜
- 潮州菜
- 香港菜
- 澳门菜
- 中國飲食文化史
|
|
L0c5 9ZXu0NgEJ7waVdT2T0NQyvXlx
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...