Google雲端平台

Multi tool use
提示:本条目的主题不是
Google雲端連接。
body.skin-minerva .mw-parser-output table.infobox captiontext-align:center
Google雲端平台開發者 | Google
|
---|
初始版本 | 2011年10月6日,7年前(2011-10-06)
|
---|
開發狀態 | 活躍 |
---|
编程语言 |
|
---|
系統平台 | Google App Engine、Google Compute Engine、Google Cloud Datastore,Google Cloud Storage、Google BigQuery、Google Cloud SQL |
---|
类型 | 雲存儲、Web開發 |
---|
许可协议 | 專有軟體
|
---|
網站 | cloud.google.com
|
---|
Google雲端平台(英语:Google Cloud Platform)是一項使用了Google核心基礎架構、資料分析和機器學習技術的雲計算服務。提供用於Google搜索和YouTube等終端用戶產品的相同支持基礎設施託管和開發人員產品,用於構建從簡單網站到複雜應用程序的一系列程序,並提供一系列模塊化的基於雲的服務和大量開發工具,例如託管和計算、雲存儲、數據存儲、翻譯API、預測API[1][2][3][4][5][6]。
參考文獻
^ Why Google Cloud Platform. cloud.google.com. [2014-04-05].
^ Google Cloud Platform. cloud.google.com. [2014-04-05].
^ Google Cloud Products. cloud.google.com. [2014-04-05].
^ Google 雲端平台 Cloud Platform 使用與介紹. blog.xsoin.com.
^ Google 推出雲端平台,將以有競爭力的價格與 Amazon 一拚高下.
^ 2017 Google Cloud OnBoard -Taipei 會議重點整理 - 傑瑞窩在這. 2017-04-24.
雲端運算
|
---|
| 即服务 | - 内容即服务
- 软件即服务
- 平台即服务
- 基礎設施即服務
- 虚拟桌面
- 数据即服务
- 移动后端即服务
- 网络即服务
- 安全即服务
- 恢复即服务
|
---|
| 技术 | - 云数据库
- 云存储
- 数据中心
- 分布式云文件系统
- 硬件虚拟化
- 互联网
- 计算机网络
- 安全性
- 结构化存储
- 虚拟设备
- 网络API
- 虛擬私有雲
|
---|
| 应用程序 | - Box
Google
HP云(已关闭)
- 微软在线
- 甲骨文云
- Rackspace
- Salesforce
- Zoho
- SAP按需解决方案
- MSN
|
---|
| 平台 | - Alpha7
- 亞馬遜網路服務系統
- AppScale
- Box
- Bluemix
- 云铸造
- 可卡因
- 引擎工厂
- Helion
- GE Predix
- Google App Engine
- GreenQloud
- Heroku
- Inktank
- Jelastic
- Mendix
- Microsoft Azure
- MindSphere
- 甲骨文云
- OutSystems
- openQRM
- OpenShift
- PythonAnywhere
- RightScale
- Force.com
- SAP云平台
- VMware vCloud Air
- WaveMaker
|
---|
| 基础设施 | - 亚马逊
- Abiquo企业版
- CloudStack
- Citrix云
- CtrlS
- DigitalOcean
- EMC Atmos
- Eucalyptus
- 富士通
- GoGrid
- Google雲端平台
- GreenButton
- GreenQloud
- IBM云计算
- iland
- Joyent
- Lunacloud
- Mirantis
- Nimbula
- Nimbus
- OpenNebula
- OpenStack
- 甲骨文云
- OrionVM
- Rackspace云
- Safe Swiss云
- SoftLayer
- Zadara Storage
- libvirt
- libguestfs
- OVirt
- Virtual Machine Manager
- Wakame-vdc
- 按需虚拟私人云
|
---|
|
分类
共享资源
|
|
U6QXHA0p,NQpmB909h Yv2HwCom8mMVPGAeM fsJSKmcCh
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...