HD 40307 g

Multi tool use
HD 40307 g
太陽系外行星
| 太陽系外行星列表
|
---|
 想象图
|
母恆星
|
---|
母恆星 | HD 40307 |
星座 | 繪架座 |
赤經 | (α) | 05h 54m 04.2409s[1] |
赤緯 | (δ) | −60° 01′ 24.498″[1] |
距離 | 41.8 ± 0.3 ly (12.83 ± 0.09[1] pc) |
光譜類型 | K2.5V[1] |
軌道參數
|
---|
半长轴 | (a) | 0.600[2]AU
|
軌道離心率 | (e) | 0.22[2] |
公轉週期 | (P) | 197.8 ± 9.0[2]d
|
半振幅 | (K) | 0.95 ± 0.3[2]m/s
|
物理性质
|
---|
最小质量 | (m sin i) | 7.1[2]M⊕ |
發現
|
---|
發現時間 | 2012年10月28日 |
發現者 | Mikko Tuomi 等 |
發現方法 | 径向速度,借助HARPS
|
發現地點 | 智利拉西拉天文台
|
發表論文 | 已公布[2] |
數據庫參考 |
太陽系外行星 百科全書 | data |
SIMBAD | data |
HD 40307 g,为一颗位于绘架座的太阳系外行星,位于恒星HD 40307的适居带之内,距离地球42光年。2012年10月28日,米可·托米等人借助欧洲南方天文台HARPS光谱仪设备发现了该行星。[2][3][4]11月8日,该天文团队宣布了这一发现。[5]
HD 40307 g与母恒星的距离接近一个天文单位,可能存在液态水。按照赫特福德大学天文学家休·琼斯的推断,该行星可能为一颗较适宜类地生命存在的星体。[3]
参考文献
^ 1.01.11.21.3 HD 40307. SIMBAD. Centre de Données astronomiques de Strasbourg. 2008 [18 June 2008].
^ 2.02.12.22.32.42.52.6 Tuomi, Anglada-Escude, Gerlach, Jones, Reiners, Rivera, Vogt, Butler, Mikko, Guillem, Enrico, Hugh R. R., Ansgar, Eugenio J., Steven S., R. Paul. Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307. 2012. arXiv:1211.1617v1 [astro-ph].
^ 3.03.1 Wall, Mike. 'Super-Earth' Alien Planet May Be Habitable for Life. Space.com. November 7, 2012 [November 8, 2012].
^ Tate, Karl. Super-Earth Planet: Potentially Habitable Alien World Explained (Infographic). Space.com. November 7, 2012 [November 8, 2012].
^ 天文学家发现“超级地球”
HD 40307系统
|
---|
| 恒星 | |
---|
| 行星 | - HD 40307 b
- HD 40307 c
- HD 40307 d
- HD 40307 e
- HD 40307 f
- HD 40307 g
|
---|
|
X1hYbIdyjzp0ks8G1E0HC1gUto9TbrG2NURILVO8muGh0jihkiVp00jyzTBl9e VfR24PusAoR
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...