数学記号の表
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(2013年1月) |
この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています | 。
数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。
数学記号が示す対象やその定義は、基本的にそれを用いる人に委ねられるため、一見して同じ記号であっても内容が異なっていたり、逆に異なる記号であっても、同じ対象を示していることがある[注 1]。従って本項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。
目次
1 記号論理の記号
2 集合論の記号
3 位相空間論の記号
4 定数
5 幾何学の記号
6 解析学の記号
7 代数学の記号
8 統計学の記号
9 注釈
10 参考資料
11 関連項目
記号論理の記号
以下の解説において、文字 P, Q, R はそれぞれ何らかの命題を表すものとする。
記号 | 意味 | 解説 |
---|---|---|
∧displaystyle land | 論理積 | 「P ∧ Q」は「命題 P と命題 Q がともに真」という命題を表す。 |
∨displaystyle lor | 論理和 | 「P ∨ Q」は「命題 P と命題 Q の少なくとも一方は真」という命題を表す。 |
¬displaystyle neg | 否定 | 「¬P」は「命題 P が偽」という命題を表す。 |
⇒displaystyle Rightarrow | 論理包含、含意 | 「P ⇒ Q」は、「命題 P が真なら必ず命題 Q も真」という命題を表す。P が偽の場合は P ⇒ Q は真であることに注意が必要。 |
→displaystyle rightarrow | ||
⇔, iff, ≡displaystyle Leftrightarrow , textiff, equiv | 同値 | 「P ⇔ Q, P ≡ Q」は P と Q の真偽が必ず一致することを意味する。 iffはif and only ifの略である。 実際上は P, Q がともに真で一方から他方が導かれるときにこの記号を使う。 |
⊨displaystyle vDash | 論理的帰結、伴意 | |
⊢displaystyle vdash | 推論 | |
∀displaystyle forall | 全称限量記号 | しばしば ∀x ∈ S; P(x), ∀x ∈ S [P(x)] のように書かれ、集合 S の任意の元 x に対して命題 P(x) が成立することを表す。 |
∃displaystyle exists | 存在限量記号 | しばしば ∃ x ∈ S s.t. P(x) のように書かれ、集合 S の中に命題 P(x) を成立させるような元 x が少なくとも1つ存在することを表す。 |
∃1, ∃1, ∃!displaystyle exists _1, exists 1, exists ,! | 一意的に存在 | しばしば ∃1x ∈ S s.t. P(x) のように書かれ、集合 S の中に命題 P(x) を成立させるような元 x が唯一つ存在することを表す。他の記法も同様である。 |
∴displaystyle therefore | 結論 | 文頭に記され、その文の主張が前述の内容を受けて述べられていることを示す。 |
∵displaystyle because | 理由・根拠 | 文頭に記され、その文の内容が前述の内容の理由説明であることを示す。 |
:=, :⇔displaystyle :=, :Leftrightarrow | 定義 | 「A := X」は、A という記号の意味するところを、X と定義することである。「A :⇔ X」とも書く。また "=" の上に "def" ないし "△" を書くこと(def=, △=)もある。:⇔ は命題を定義するときに使い, := は何らかの数量や対象を定義するときに使う。 |
集合論の記号
以下の解説において、S, T は任意の集合を表す。
記号 | 意味 | 解説 |
---|---|---|
: , ∣ , ; displaystyle : , mid , ; | 集合の内包的記法 | x ∈ S, P(x)} は S の元のうち、命題 P(x) が真であるものすべてを集めた集合を意味し、これはまた x ∈ S のようにもしばしば略記される(「x ∈ S」のような条件が省略されている場合、無制限の内包であるか紛れのおそれがないので省略したのかは文脈を読むべきである)。 |
∈, ∋, ∉, ∌displaystyle in , ni , notin , not ni | 集合に対する元の帰属関係 | 「x ∈ S」は、x が集合 S の元であることを意味する。必要に応じて「S ∋ x」とも書くが、こちらには S が主語であるようなニュアンスを伴うこともある。 また、「¬(x ∈ S)」すなわち x が集合 S の元であることの否定を「x ∉ S」と書く。x が集合 S の元でないことを表わす。 |
=displaystyle = | 集合の一致 | 「S = T」は集合 S と集合 T が等しいことを示す。 |
≠displaystyle neq | = の否定 | 「S ≠ T」は集合 S と集合 T が等しくないことを示す。 |
⊆, ⊇, ⊂, ⊃, ⊊, ⊋, ⊄, ⊅displaystyle subseteq , supseteq , subset , supset , subsetneq , supsetneq , not subset , not supset | 集合の包含関係 | 「S ⊆ T」は S が T の部分集合であることを意味する。必要に応じて「T ⊇ S」とも書く。他も同じ。 ⊆ は S と T が等しい場合を含み、真部分集合に対しては ⊊ が用いられる。⊂ は真部分集合のみを指す流儀と、一般の部分集合を指す流儀がある。⊂ が一般の部分集合を表す場合には真部分集合を ⊊ によって表わし、⊂ が真部分集合を表す場合には一般の部分集合を ⊆ によって表わす。 |
記号 | 意味 | 解説 |
---|---|---|
∩displaystyle cap | 共通部分 | 「S ∩ T」は集合 S と集合 T の共通部分を表す。また⋂λ∈ΛSλdisplaystyle textstyle bigcap limits _lambda in Lambda S_lambda は、集合族 Sλ のすべての共通部分を表す。S:= λ∈Λdisplaystyle mathfrak S:=S_lambda のとき、上の集合族を ⋂Sdisplaystyle textstyle bigcap mathfrak Sと書くことがある。 |
∪displaystyle cup | 和集合 | 「S ∪ T」は集合 S と集合 T の和集合を表す。また、⋃λ∈ΛSλdisplaystyle textstyle bigcup limits _lambda in Lambda S_lambda は、集合族 Sλ のすべての和集合を表す。Sdisplaystyle mathfrak S が上欄のものであるとき、上の集合族を ⋃Sdisplaystyle textstyle bigcup mathfrak Sと書くことがある。 |
+, ∑, ∐, ⨁displaystyle +, textstyle sum , coprod , bigoplus | 直和集合 | 「S + T」は「S ∪ T」に同じであるが、S ∩ T が空集合であることを暗黙に述べている。 この場合、集合族の和集合は∑λ∈ΛSλdisplaystyle textstyle sum limits _lambda in Lambda S_lambda のように記す。 |
∖, −displaystyle setminus , - | 差集合 | 「S ∖ T」は、集合 S から集合 T を除いた差集合を表す。「S − T」も同じ。 |
∙c, ∁∙displaystyle bullet ^mathrm c , complement bullet | 補集合 | Sc は集合 S の補集合を表す。c は complement の略である。「∁Sdisplaystyle complement S」も同じ。 |
2∙, P(∙), P(∙)displaystyle 2^bullet , mathfrak P(bullet ), mathcal P(bullet ) | 冪集合 | 2S は、S の部分集合をすべて集めた集合を表す。P(S)displaystyle mathfrak P(S) とも書く。 |
(∙,∙,…)displaystyle (bullet ,bullet ,dotsc ) | 順序対 | 元の順序付けられた組 |
×, ∏displaystyle times , textstyle prod | 直積集合 | 「S × T」は S と T の直積を表す。一般に、集合族 Sλ に属する集合の直積を∏λ∈ΛSλdisplaystyle textstyle prod limits _lambda in Lambda S_lambda のように記す。 |
∙/∙displaystyle bullet /bullet | 商集合 | 「S/∼」は、集合 S の同値関係 ∼ によって定まる S の商集合を表す。 |
Map(∙,∙), ∙∙, F(∙,∙)displaystyle operatorname Map (bullet ,bullet ), bullet ^bullet , mathcal F(bullet ,bullet ) | 写像の全体 | Map(S, T) や TS は S から T への写像をすべて集めた集合を表す。 |
△, ⊖displaystyle triangle , ominus | 対称差 | 対称差は、二つの集合に対し、一方には含まれるが他方には含まれない元をすべて集めた集合を表す: P△Q:=(P∪Q)∖(P∩Q)=(P∖Q)∪(Q∖P)displaystyle P,triangle ,Q:=(Pcup Q)setminus (Pcap Q)=(Psetminus Q)cup (Qsetminus P) |
記号 | 意味 | 解説 |
---|---|---|
f:∙→∙displaystyle fcolon bullet to bullet | 写像 | 「f: S → T」は、f が S から T への写像であることを示す。 |
∙↦∙displaystyle bullet mapsto bullet | 元の対応 | x↦fydisplaystyle x,stackrel fmapsto ,y は、x を写像 f によって写したものが y であることを意味する。文脈上明らかであれば f の記述は省略される。元の対応と元の属する集合をともに書いた f:R∋x↦sinx∈[−1,1]displaystyle fcolon mathbb R ni xmapsto sin xin [-1,1]というような表記もなされる. |
∘displaystyle circ | 合成写像 | 「f∘gdisplaystyle fcirc g」は写像 f と写像 g の合成を表す。すなわち f∘g(x):=f(g(x))displaystyle fcirc g(x):=f(g(x)) である。合成の順序を逆に定義する(つまり、g(f(x)) と定義する)流儀もある。 |
Im, Image, ∙[∙]displaystyle textIm, textImage, bullet [bullet ] | 像 | 写像 φ に対して、Image φ はその写像の像全体の集合(値域)を表す。写像φ:X→Ydisplaystyle varphi colon Xto Yに対して φ[X]displaystyle varphi [X]とも書く. |
記号 | 意味 | 解説 |
---|---|---|
=displaystyle = | 相等 | x = y は x と y が等しいことを表す。 |
≠displaystyle neq | 不一致 | x ≠ y は x と y が等しくないことを表す。 |
≒, ≈displaystyle approx | ほぼ等しい | 「x ≒ y」または「x ≈ y」は x と y がほぼ等しいことを表す。記号 ≒ は日本など少数の地域でのみ通用し、≈ の方が標準的である。その他にも ∼, ≃, ≅ などを同様の意味で用いることもある。近似においてどのくらい違いを容認するかは文脈による。多くの場合、誤差解析的な意味で用いられ、ある誤差の見積もりの下で両者が等しいことを示すが、そのほかにも漸近解析においては漸近的に等しいという意味で用いられる。 |
記号 | 意味 | 解説 |
---|---|---|
<, >displaystyle <, > | 大小関係, 順序 | 「x < y」は x と y の間に何らかの順序が定まっていて、x の方が「先」であることを示す。必要に応じて「y > x」とも書く。 |
≤, ≥, ≦, ≧displaystyle leq , geq , leqq , geqq | 大小関係, 順序 | 「x ≦ y」とは「x < y または x = y」のことである。「x ≧ y」も同様に定義される。 |
(⋅,⋅), ]⋅,⋅[displaystyle (cdot ,cdot ), ]cdot ,cdot [ | 開区間 | (a, b) は x : a < x < b を表す |
[⋅,⋅]displaystyle [cdot ,cdot ] | 閉区間 | [a, b] は x : a ≦ x ≦ b を表す |
(⋅,⋅], ]⋅,⋅], [⋅,⋅), [⋅,⋅[displaystyle (cdot ,cdot ], ]cdot ,cdot ], [cdot ,cdot ), [cdot ,cdot [ | 半開区間 | (a, b] は x : a < x ≦ b を表す |
supdisplaystyle sup | 上限 | 集合 S に対し、sup S は S の上限を表す。また、写像 f に対し、f(S) の上限をsupx∈Sf(x)displaystyle sup _xin Sf(x)とも書く. これは supf(x); x∈Sdisplaystyle supf(x); xin Sの略記である. その他、幾つかの記法のバリエーションがある。 |
infdisplaystyle inf | 下限 | 上限と同様。 |
maxdisplaystyle max | 最大値 | 記法は上限と同様 |
mindisplaystyle min | 最小値 | 記法は上限と同様 |
記号 | 意味 |
---|---|
∅,∅displaystyle varnothing ,emptyset | 空集合 |
P, Pdisplaystyle mathbf P , mathbb P | 素数 (Prime number)の全体、射影空間など |
N, Ndisplaystyle mathbf N , mathbb N | 自然数 (Natural number)の全体 |
Z, Zdisplaystyle mathbf Z , mathbb Z | 整数 (独: Zahlen)の全体 |
Q, Qdisplaystyle mathbf Q , mathbb Q | 有理数 (Quotient)の全体 |
R, Rdisplaystyle mathbf R , mathbb R | 実数 (Real number)の全体 |
A, Adisplaystyle mathbf A , mathbb A | 代数的数 (Algebraic number)の全体、アフィン空間、アデールなど |
C, Cdisplaystyle mathbf C , mathbb C | 複素数 (Complex number)の全体 |
H, Hdisplaystyle mathbf H , mathbb H | 四元数 (Hamilton number)の全体 |
O, Odisplaystyle mathbf O , mathbb O | 八元数 (Octonion)の全体 |
S, Sdisplaystyle mathbf S , mathbb S | 十六元数 (Sedenion)の全体 |
Fq,GF(q)displaystyle mathbb F _q,operatorname GF (q) | 位数 q の有限体 |
ΔXdisplaystyle Delta _X | 対角線集合:ΔX:=(x,x); x∈X.displaystyle Delta _X:=(x,x); xin X. |
記号 | 意味 | 解説 |
---|---|---|
|•|, card, # | 濃度 | |S| は集合 S の濃度を表す。card S や #S も同じ。 |
ℵ0, a, ℶ0displaystyle aleph _0, mathfrak a, beth _0 | 可算濃度 | 自然数で番号付けのできる濃度。これは最小の無限濃度である。 |
ℵ, c, ℶ1displaystyle aleph , mathfrak c, beth _1 | 連続体濃度 | 実数の濃度。これが可算濃度の次の濃度であるというのが連続体仮説である。 |
位相空間論の記号
以下,X, Y などは集合を表す.
記号 | 意味 | 解説 |
---|---|---|
O, Odisplaystyle mathcal O, mathfrak O | 開集合系 | X 上に定まる開集合系を表す.開集合系によって位相を定める文脈では X を (X,O)displaystyle (X,mathcal O) などとも書く. |
C, Cdisplaystyle mathcal C, mathfrak C | 閉集合系 | X 上に定まる閉集合系を表す.閉集合系によって位相を定める文脈では X を (X,C)displaystyle (X,mathcal C) などとも書く. |
B(x,r), Br(x), BX(x,r)displaystyle B(x,r), B_r(x), B_X(x,r) | 開球 | x∈Xdisplaystyle xin X を中心とする半径 r>0displaystyle r>0 の開球 (open ball) を表す.どの集合の位相で考えているかを明記するときは BX(x,r)displaystyle B_X(x,r) のように書く. |
IntX, X∘displaystyle textInt,X, X^circ | 内部, 開核 | X の内部 (interior) を表す. |
X−, X¯, ClXdisplaystyle X^-, overline X, textCl,X | 閉包 | X の閉包 (closure) を表す. |
∂Xdisplaystyle partial X | 境界 | X の境界 (frontier, boundary) を表す. |
OYdisplaystyle mathcal O_Y | 相対位相 | 位相空間 (X,O)displaystyle (X,mathcal O) と Y⊂Xdisplaystyle Ysubset X に対して, OYdisplaystyle mathcal O_Y は相対位相を表す. |
定数
ある数学定数を表すために広く習慣的に使われる記号がいくつかある。
記号 | 意味 | 解説 |
---|---|---|
0 | 0 | 加法における単位元、乗法の零元などを指す。 |
1 | 1 | 乗法の単位元、加法の零元などを指す。 |
π | 円周率 | 円周の直径に対する比 |
τ | 円周率 の2倍 | 円周の半径に対する比 一般的には使用はされない |
e | ネイピア数(自然対数の底) | リンク先参照。定義の一例としてddxax=axdisplaystyle frac ddxa^x=a^x なる a。 |
i | 虚数単位 | 自乗して −1 となる数。電気工学系ではしばしば j を用いる。 |
j, k | 1, i と共に四元数体の、R上のベクトル空間としての基底をなす。 |
幾何学の記号
記号 | 意味 | 解説 |
---|---|---|
≡displaystyle equiv | 合同 | 適当な方法で一致させることができる図形の間の関係 |
∽, ∼displaystyle sim | 相似 | |
(∙,∙,…)displaystyle (bullet ,bullet ,dotsc ) | 座標 | |
∠displaystyle angle | 角 | ∠bでbの角を示す、∠ABCでBの角を示す。また複素数の複素平面上におけるベクトルが実軸となす角度 |
∟ | 直角 | ∟ABCでBの角が直角であることを示す |
⊥displaystyle bot | 垂直 | AB⊥CDで直線ABと直線CDが垂直であることを示す |
//, ∥displaystyle /!/, parallel | 平行 | AB∥CDで直線ABと直線CDが平行であることを示す |
⌢displaystyle frown | 弧 | ⌒ABでABの弧を示す |
記号 | 意味 | 解説 |
---|---|---|
d(∙,∙)displaystyle d(bullet ,bullet ) | 距離関数 | d(x, y) は x と y' との距離 |
diam(∙)displaystyle operatorname diam (bullet ) | 径 | diam(X) は d(x, y) (x, y ∈ X) の上限 |
記号 | 意味 | 解説 |
---|---|---|
H∙(∙)displaystyle H^bullet (bullet ) | コホモロジー | |
H∙(∙)displaystyle H_bullet (bullet ) | ホモロジー | |
π(∙)displaystyle pi (bullet ) | ホモトピー |
解析学の記号
記号 | 意味 | 解説 |
---|---|---|
≪displaystyle ll | 非常に小 | 「x ≪ y」は x が y に比べて非常に小さいことを表す。「どれくらい」小さいかは文脈による。 |
≫displaystyle gg | 非常に大 | 「x ≫ y」は x が y に比べて非常に大きいことを表す。「どれくらい」大きいかは文脈による。 |
∧, ∨displaystyle wedge , vee | 小さくない方, 大きくない方 | x∧ydisplaystyle xwedge y で'x','y'の小さくない方, x∨ydisplaystyle xvee y で'x','y'の大きくない方を表すことがある. |
limdisplaystyle lim | 極限 | 数列 an に対し、limn→∞andisplaystyle lim _nto infty a_n はその数列の極限値を表す。 また、関数 f(x) に対し、limx→cf(x)displaystyle lim _xto cf(x) は f(x) の c における極限値を表す。 |
lim sup,lim¯displaystyle limsup ,varlimsup | 上極限 | lim supn→∞an=infn∈Nsupk≥nakdisplaystyle limsup _nto infty a_n=inf _nin mathbb N sup _kgeq na_k |
lim inf,lim_displaystyle liminf ,varliminf | 下極限 | lim infn→∞an=supn∈Ninfk≥nakdisplaystyle liminf _nto infty a_n=sup _nin mathbb N inf _kgeq na_k |
o(∙)displaystyle o(bullet ) | 漸近記法 | 関数の漸近挙動を表す |
O(∙)displaystyle O(bullet ) | ||
Θ(∙)displaystyle Theta (bullet ) | ||
Ω(∙)displaystyle Omega (bullet ) | ||
∙∼∙displaystyle bullet sim bullet | ||
∙≈∙displaystyle bullet approx bullet |
記号 | 意味 | 解説 |
---|---|---|
∙′displaystyle bullet ' | 導関数, 微分 | 関数 f に対し、f' は f の導関数を表す(ラグランジュの記法)。' はプライム、まれにダッシュとも呼ばれる。 また、次のようにも表記される。
|
ddx∙displaystyle frac ddxbullet | ||
∂displaystyle partial | 偏微分 | ∂f(x,y)∂xdisplaystyle frac partial f(x,y)partial x:多変数関数 f(x, y) の y に関する偏微分。 |
∫displaystyle int | 積分 | ∫abf(x)dxdisplaystyle int _a^bf(x)dx : 関数 f(x) の区間 [a,b] における積分 |
∫Df(x)dxdisplaystyle int _D,f(x)dx : f(x) の領域 D における積分 | ||
∫f(x)dxdisplaystyle int f(x)dx : f(x) の不定積分。または、積分域が明らかな場合の略記 | ||
∇∙displaystyle nabla bullet | ナブラ | 各成分を微分するベクトル微分作用素 |
△∙displaystyle triangle bullet | ラプラシアン | 2つの ∇ の内積になるラプラスの微分作用素 |
Δ∙displaystyle Delta bullet | ||
◻∙displaystyle Box bullet | ダランベルシアン | 物理学において、時空の空間成分のラプラシアンに時間成分を加えたもの |
C∙displaystyle C^bullet | Ck=Ck(D)displaystyle C^k=C^k(D) は D 上で定義された k 回連続微分可能な関数からなる集合 | |
div∙displaystyle operatorname div bullet | 発散(湧き出し) | ベクトル場 A(x) に対する ∇⋅A(x) を与える |
rot∙,curl∙displaystyle operatorname rot bullet ,operatorname curl bullet | 回転(渦度) | ベクトル場 A(x) に対する ∇×A(x) を与える |
grad∙displaystyle operatorname grad bullet | 勾配 | スカラー場 f(x) に対する ∇f(x) を与える |
代数学の記号
記号 | 意味 | 解説 |
---|---|---|
+displaystyle + | 正符号 | x の反数(加法に関する逆元)を表すために負符号を用いて −x と記す。反数を与える演算を負符号で表すことに対応して、x 自身を与える恒等変換に正符号を用い、その結果を +x のように表すことがある。 |
−displaystyle - | 負符号 | |
+displaystyle + | 加法 | x + y は x と y の和を表す |
∑displaystyle sum | 総和 |
と定義され、その極限として定まる無限和を
と書く。またある命題 P(x) があるとき、P(x) を満たすような各 k についての和を取ることを
と書く。 |
−displaystyle - | 減法 | x − y は x と y の差を表す。通常、y の反数 −y を用いて x + (−y) と定義されている。 |
±displaystyle pm | 加法と減法 | x ± y は x と y の和と差を表す。 |
×displaystyle times | 乗法 | x × y は x と y の積を表す。中黒を使って x · y と書いたりアスタリスクを使って x * y とも書く。特にアスタリスクは多くのプログラミング言語において乗法の演算子として用いられる。 |
⋅displaystyle cdot | ||
∗displaystyle * | ||
∙−1displaystyle bullet ^-1 | 乗法逆元 | |
∏displaystyle prod | 総乗 | Σ はたくさんの加法を一挙に表すものであったが、Π はたくさんの乗法を一挙に表すものである。
他の記法のバリエーションも ∑ に同じ。 |
÷displaystyle div | 除法 | x ÷ y は x を y で割った商と剰余の組か、あるいは商を表す。x ÷ y の商はしばしば分数 x/y で表され、また斜線自体を商を与える演算子と見なすことがある。多くのプログラミング言語においては商を与える演算子として / が定義されている。 |
/displaystyle / | ||
!displaystyle ! $ | 階乗 超階乗 | n! は n の階乗を表す。 n$はnの超階乗を表す。 |
δijdisplaystyle delta _ij | クロネッカーのデルタ | i = j のとき 1、i ≠ j のとき 0。通常は総和の中に現れる。 |
⌊∙⌋,[∙]displaystyle lfloor bullet rfloor ,[bullet ] | 床関数 | ⌊x⌋displaystyle lfloor xrfloor は x 以下の最大整数を表す。 |
⌈∙⌉displaystyle lceil bullet rceil | 天井関数 | ⌈x⌉displaystyle lceil xrceil は x 以上の最小整数を表す。 |
(nk),nCk,Ckndisplaystyle binom nk,,_nC_k,,C_k^n | 二項係数(組み合わせ) | 通常は括弧書きで表される。C を使った記法は様々なバリエーションがある。 |
記号 | 意味 | 解説 |
---|---|---|
moddisplaystyle operatorname mod | 剰余 | 「x mod y」は整数 x の属する法 y の剰余類や、x を y で割った余りを表す。C言語やその影響を受けたプログラミング言語などでは整数の剰余を与える演算子として % が定義されている[注 2]。Fortran のように mod を用いる言語も存在する。 |
%displaystyle % | ||
| | 割り切る | x | y は、x が y を割り切る、つまり x は y の約数であることを表す。 |
⧸|displaystyle not | | の否定 | - |
∙≡∙(mod∙)displaystyle bullet equiv bullet pmod bullet | 合同 | n ≡ m (mod d) は n と m が d を法として合同であることを示す。 |
ord(∙)displaystyle operatorname ord (bullet ) | 位数 | ある群の元の個数を群の位数という。また群の元 x に対し、ord x は x の生成する巡回群の位数を表す。 |
(∙,∙)displaystyle (bullet ,bullet ) | 最大公約数 | (a, b) は a と b の最大公約数を表す。gcd は greatest common divisor の略である。プログラミング言語の数学ライブラリにおいて、最大公約数を与える関数(サブルーチン)が gcd としてしばしば定義される。 |
gcd(∙,∙)displaystyle gcd(bullet ,bullet ) |
記号 | 意味 | 解説 |
---|---|---|
0displaystyle 0 | 零元 | 加法的代数系の単位元を 0 あるいは 0S と書く。 |
Odisplaystyle O | ||
1displaystyle 1 | 乗法単位元 | 乗法的代数系の単位元を 1 あるいは 1S と書く。 |
edisplaystyle e | 冪等元 | 環の冪等元をしばしば e で表す。 |
記号 | 意味 | 解説 |
---|---|---|
|∙| | 絶対値 | |x| は x の絶対値である。 |
abs(∙)displaystyle operatorname abs (bullet ) | ||
‖∙‖ | ノルム | ‖x‖ は x のノルムである。 |
ℜ∙displaystyle Re bullet | 実部 | 複素数 z に対し、Re(z) はその実部を、Im(z) はその虚部を表す。z = Re(z) + i Im(z) |
Re∙displaystyle operatorname Re bullet | ||
ℑ∙displaystyle Im bullet | 虚部 | |
Im∙displaystyle operatorname Im bullet | ||
∙¯displaystyle overline bullet | 共役複素数 | 複素数 z に対し、z¯displaystyle bar z はその共役複素数を表す。 |
deg∙displaystyle operatorname deg bullet | 次数 | 多項式 f に対して、deg f はその次数を表す。 |
∙,∙∙displaystyle sqrt bullet ,sqrt[bullet ]bullet | 冪根、根基 | n√x は x の n 乗根を表す。n が 2 であるときには単に √x と書くことが多い。イデアルの根基をあらわす。 |
⟨∙,∙⟩displaystyle langle bullet ,bullet rangle | 内積 | <x, y> は x と y の内積を表す |
(∙,∙)displaystyle (bullet ,bullet ) |
記号 | 意味 | 解説 |
---|---|---|
dim∙∙displaystyle dim _bullet bullet | 次元 | ベクトル空間 V に対し、「dim V」は V の次元を表す。 |
|∙| | 行列式 | |X| は行列 X の行列式である。 |
det(∙)displaystyle det(bullet ) | ||
tr(∙)displaystyle operatorname tr (bullet ) | 跡 | tr(X) は行列 X の跡である。 |
t∙,∙tdisplaystyle ^tbullet ,bullet ^t | 転置 | tX は行列 X の転置行列である。 |
rank∙displaystyle operatorname rank bullet | 階数 | 線形写像 φ に対して、rank φ は dim Image(φ) を表す。また、行列 A に対して、rank A は A の階数を表す。 |
Ker∙, ker∙displaystyle operatorname Ker bullet , ker bullet | 核, 零空間 | 群や環の準同型、ベクトル空間の間の線形写像 φ に対して、Ker φ はその準同型の核を表す。 |
Im∙, im∙displaystyle operatorname Im bullet , operatorname im bullet | 像 | 群や環の準同型、ベクトル空間の間の線形写像 φ に対して、Im φ はその準同型の像を表す。 |
Hom∙(∙,∙)displaystyle operatorname Hom _bullet (bullet ,bullet ) | 準同型の集合 | HomK(F, G) は、作用域 K のある代数系 F, G の間の作用準同型 (homomorphism) 全体からなる集合を表す。 |
Aut(∙)displaystyle operatorname Aut (bullet ) | 自己同型群 | Aut(G) は、G のそれ自身に対する同型 (automorphism) 全体からなる群を表す。 |
Inn(∙)displaystyle operatorname Inn (bullet ) | 内部自己同型群 | Inn(G) は、G の内部自己同型 (inner automorphism) 全体からなる群を表す。 |
End(∙)displaystyle operatorname End (bullet ) | 自己準同型 | End(G) は、G のそれ自身に対する準同型 (endomorphism) 全体からなる集合(モノイド)を表す。 |
記号 | 意味 | 解説 |
---|---|---|
⟨∙⟩displaystyle langle bullet rangle | 生成 | G を群とすると、G の部分集合 S に対し、〈S〉 は S の生成する部分群を表す。特に、S が一元集合 S = x であるときには 〈x〉 とも書く。これは x の生成する巡回群である。環やベクトル空間などについても同様の記法を使う。 |
(∙)displaystyle (bullet ) | 生成するイデアル | (a, ...) は a, ... の生成するイデアル |
K[∙]displaystyle K[bullet ] | 多項式環、生成する環 | K を可換環とするとき、K[x, ...] は K と x, ... を含む最小の環。生成系が不定元のみからなれば多項式の環である。 |
K(∙)displaystyle K(bullet ) | 有理関数環、生成する体 | K を可換体とするとき、K(x, ...) は K と x, ... を含む最小の体。生成系が不定元のみからなれば有理式の体である。 |
K⟨∙⟩displaystyle Klangle bullet rangle | 非可換多項式環、生成する環 | K を非可換環とするとき、K〈x, ...〉 は K と x, ... を含む最小の環。 |
統計学の記号
記号 | 意味 | 解説 |
---|---|---|
r. v. | 確率変数 | random variable の略 |
p. m. f. あるいは pmf | 確率質量関数 | probability mass function の略 |
p. d. f. あるいは pdf | 確率密度関数 | probability density function の略 |
∼displaystyle sim | “確率変数”が“確率分布”に従う | X∼Ddisplaystyle textstyle Xsim mathcal D は確率変数 X が確率分布 Ddisplaystyle textstyle mathcal D に従うことを表す |
i. i. d. | 独立同分布 | independent and identically distributed の略。X1, ..., Xn i.i.d. は確率変数 X1, ..., Xn が同じ確率分布に独立に従うことを表す |
P(∙),P(∙)displaystyle P(bullet ),mathbb P (bullet ) | 確率 | P(E) は事象 E の確率 |
E(∙),E(∙)displaystyle E(bullet ),mathbb E (bullet ) | 期待値 | E(X) は確率変数 X の期待値 |
V(∙)displaystyle V(bullet ) | 分散 | V(X) は確率変数 X の分散 |
Cov(∙,∙)displaystyle operatorname Cov (bullet ,bullet ) | 共分散 | Cov(X, Y) は確率変数 X, Y の共分散 |
N(μ,σ2)displaystyle N(mu ,sigma ^2) | 正規分布 | 平均 μ, 分散 σ2 の正規分布 |
ρdisplaystyle rho | 相関係数 | 確率変数の相関係数 |
注釈
^ 数学においては、各々の記号はそれ単独では「意味」を持たないものと理解される。それらは常に、数式あるいは論理式として文脈(時には暗黙のうちに掲げられている、前提や枠組み)に即して評価をされて初めて、値として意味を生じるのである。ゆえにここに掲げられる意味は慣用的な一例に過ぎず絶対ではないことに事前の了解が必要である。記号の「読み」は記号の見た目やその文脈における意味、あるいは記号の由来(例えばエポニム)など便宜的な都合(たとえば、特定のグリフをインプットメソッドを通じてコードポイントを指定して利用するために何らかの呼称を与えたりすること)などといったものに従って生じるために、「記号」と「読み」との間には相関性を見いだすことなく分けて考えるのが妥当である。
^ 言語によっては%
をエスケープする必要があり、たとえばR言語では%%
が用られる。
参考資料
JIS Z8201 数学記号
関連項目
- 物理定数
- 黒板太字
ISO 80000-2 - ISO 31-11
|