哈雷 (德国)

Multi tool usebody.skin-minerva .mw-parser-output table.infobox captiontext-align:center
哈雷 (德国) |
---|
 圖章
|
|
|
坐标:51°28′59″N 11°58′19″E / 51.4831°N 11.9719°E / 51.4831; 11.9719
|
國家 |
德國
|
---|
所属联邦州 | 萨克森-安哈尔特州
|
---|
面积
|
---|
• 总计
| 135.02 平方公里(52.13 平方英里) |
---|
海拔
| 88 米(289 英尺) |
---|
人口(2015年12月31日)
|
---|
• 總計 | 236,991 |
---|
• 密度
| 1,755/平方公里(4,550/平方英里) |
---|
时区 | CET (UTC+1) |
---|
• 夏时制
| CEST(UTC+2) |
---|
邮政编码 | 06108-06132
|
---|
電話區號 | 0345 |
---|
政府地址 | Marktplatz 1 06108 Halle (Saale) |
---|
汽车牌号 | HAL |
---|
網站 | www.halle.de |
---|
哈雷(德语:Halle (an der Saale),中文翻译为:(萨勒河畔)哈雷),又称:哈勒,是萨勒河边上的一个城市(An der Saale, 请见维基词条“撒勒河”)。城市居民约23万6千人(2005年),是萨克森-安哈尔特州人口較多的大城市之一。相邻最近的大城市是莱比锡,距离约有30公里。离首都柏林有大约130公里。离德累斯顿150公里。
哈雷市拥有著名的哈雷-维滕贝格大学,而且她还是重要的铁路枢纽。在民主德国时期,她是重要的化学教学中心。
传媒
中部德国广播电台Mitteldeutscher Rundfunk(MDR)哈雷演播中心。
- FM 89.0布罗肯峰广播电台(RTL子公司)哈雷演播中心
平面媒体
知名企业
哈雷市政热力电力公司Stadtwerke Halle
哈雷公交公司Hallesche Verkehrs-AG(HAVAG)
卡啼烤制食品公司Kathi Backmischungen
老哈勒人巧克力球食品工厂Halloren Schokoladenfabrik
- 美国戴尔电脑工厂
友好城市
德国国内
国际
中华人民共和国浙江省嘉兴市
 | 维基共享资源中相关的多媒体资源:哈雷 (德国)
|
德国萨克森-安哈尔特州行政区划
|
---|
| 直辖市 | 德绍-罗斯劳市 | 哈雷市 | 马格德堡市
| |
---|
| 县 | 萨尔茨韦德尔-阿尔特马克县 | 安哈特-比特费尔德县 | 比尔德县 | 布尔根兰县 | 哈尔茨县 | 耶里肖县 | 曼斯费尔德-南哈尔茨县 | 萨勒县 | 萨尔茨兰县 | 施滕达尔县 | 维滕贝格县
|
---|
|
规范控制 | - WorldCat Identities
- BNF: cb11951404m (data)
- GND: 4023025-9
- HDS: 29431
- LCCN: n79127825
- NKC: ge134201
- NNL: 000977274
- VIAF: 140480972
|
---|
|
f5QIgL1mrf,2Fpd a9wB,LYsdy,ExG9aiMDY 6yg 07pw5FluYFgNOju0,xwjr4r 70ErDNGNvfZdFxbPlJZp
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...