Convert list of edges dataframe to adjacency matrix dataframe
up vote
0
down vote
favorite
My dataframe represents a list of edges of a graph and has the following format:
node1 node2 weight
0 a c 1
1 b c 2
2 d c 3
My goal is to generate the equivalent adjacency matrix:
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 3
d 0 0 0 0
At the moment, while constructing the the dataframe of edges I count the number of nodes and create an NxN data frame and fill in the values manually. what is the pandas way of generating the second dataframe from the first one?
python pandas
add a comment |
up vote
0
down vote
favorite
My dataframe represents a list of edges of a graph and has the following format:
node1 node2 weight
0 a c 1
1 b c 2
2 d c 3
My goal is to generate the equivalent adjacency matrix:
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 3
d 0 0 0 0
At the moment, while constructing the the dataframe of edges I count the number of nodes and create an NxN data frame and fill in the values manually. what is the pandas way of generating the second dataframe from the first one?
python pandas
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
My dataframe represents a list of edges of a graph and has the following format:
node1 node2 weight
0 a c 1
1 b c 2
2 d c 3
My goal is to generate the equivalent adjacency matrix:
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 3
d 0 0 0 0
At the moment, while constructing the the dataframe of edges I count the number of nodes and create an NxN data frame and fill in the values manually. what is the pandas way of generating the second dataframe from the first one?
python pandas
My dataframe represents a list of edges of a graph and has the following format:
node1 node2 weight
0 a c 1
1 b c 2
2 d c 3
My goal is to generate the equivalent adjacency matrix:
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 3
d 0 0 0 0
At the moment, while constructing the the dataframe of edges I count the number of nodes and create an NxN data frame and fill in the values manually. what is the pandas way of generating the second dataframe from the first one?
python pandas
python pandas
asked Nov 11 at 5:26
Hamza
7029
7029
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
Use pivot
with reindex
In [20]: vals = np.unique(df[['node1', 'node2']])
In [21]: df.pivot(index='node1', columns='node2', values='weight'
).reindex(columns=vals, index=vals, fill_value=0)
Out[21]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Or use set_index
and unstack
In [27]: (df.set_index(['node1', 'node2'])['weight'].unstack()
.reindex(columns=vals, index=vals, fill_value=0))
Out[27]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
add a comment |
up vote
1
down vote
Decided to have a little fun with the problem.
You can convert node1
and node2
to Categorical dtype and then use groupby
.
from functools import partial
vals = np.unique(df[['node1', 'node2']])
p = partial(pd.Categorical, categories=vals)
df['node1'], df['node2'] = p(df['node1']), p(df['node2'])
(df.groupby(['node1', 'node2'])
.first()
.fillna(0, downcast='infer')
.weight
.unstack())
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Another option is setting the underlying array values directly.
df2 = pd.DataFrame(0, index=vals, columns=vals)
f = df2.index.get_indexer
df2.values[f(df.node1), f(df.node2)] = df.weight.values
print(df2)
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Use pivot
with reindex
In [20]: vals = np.unique(df[['node1', 'node2']])
In [21]: df.pivot(index='node1', columns='node2', values='weight'
).reindex(columns=vals, index=vals, fill_value=0)
Out[21]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Or use set_index
and unstack
In [27]: (df.set_index(['node1', 'node2'])['weight'].unstack()
.reindex(columns=vals, index=vals, fill_value=0))
Out[27]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
add a comment |
up vote
1
down vote
Use pivot
with reindex
In [20]: vals = np.unique(df[['node1', 'node2']])
In [21]: df.pivot(index='node1', columns='node2', values='weight'
).reindex(columns=vals, index=vals, fill_value=0)
Out[21]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Or use set_index
and unstack
In [27]: (df.set_index(['node1', 'node2'])['weight'].unstack()
.reindex(columns=vals, index=vals, fill_value=0))
Out[27]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
add a comment |
up vote
1
down vote
up vote
1
down vote
Use pivot
with reindex
In [20]: vals = np.unique(df[['node1', 'node2']])
In [21]: df.pivot(index='node1', columns='node2', values='weight'
).reindex(columns=vals, index=vals, fill_value=0)
Out[21]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Or use set_index
and unstack
In [27]: (df.set_index(['node1', 'node2'])['weight'].unstack()
.reindex(columns=vals, index=vals, fill_value=0))
Out[27]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Use pivot
with reindex
In [20]: vals = np.unique(df[['node1', 'node2']])
In [21]: df.pivot(index='node1', columns='node2', values='weight'
).reindex(columns=vals, index=vals, fill_value=0)
Out[21]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Or use set_index
and unstack
In [27]: (df.set_index(['node1', 'node2'])['weight'].unstack()
.reindex(columns=vals, index=vals, fill_value=0))
Out[27]:
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
answered Nov 11 at 5:31
Zero
37.9k76388
37.9k76388
add a comment |
add a comment |
up vote
1
down vote
Decided to have a little fun with the problem.
You can convert node1
and node2
to Categorical dtype and then use groupby
.
from functools import partial
vals = np.unique(df[['node1', 'node2']])
p = partial(pd.Categorical, categories=vals)
df['node1'], df['node2'] = p(df['node1']), p(df['node2'])
(df.groupby(['node1', 'node2'])
.first()
.fillna(0, downcast='infer')
.weight
.unstack())
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Another option is setting the underlying array values directly.
df2 = pd.DataFrame(0, index=vals, columns=vals)
f = df2.index.get_indexer
df2.values[f(df.node1), f(df.node2)] = df.weight.values
print(df2)
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
add a comment |
up vote
1
down vote
Decided to have a little fun with the problem.
You can convert node1
and node2
to Categorical dtype and then use groupby
.
from functools import partial
vals = np.unique(df[['node1', 'node2']])
p = partial(pd.Categorical, categories=vals)
df['node1'], df['node2'] = p(df['node1']), p(df['node2'])
(df.groupby(['node1', 'node2'])
.first()
.fillna(0, downcast='infer')
.weight
.unstack())
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Another option is setting the underlying array values directly.
df2 = pd.DataFrame(0, index=vals, columns=vals)
f = df2.index.get_indexer
df2.values[f(df.node1), f(df.node2)] = df.weight.values
print(df2)
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
add a comment |
up vote
1
down vote
up vote
1
down vote
Decided to have a little fun with the problem.
You can convert node1
and node2
to Categorical dtype and then use groupby
.
from functools import partial
vals = np.unique(df[['node1', 'node2']])
p = partial(pd.Categorical, categories=vals)
df['node1'], df['node2'] = p(df['node1']), p(df['node2'])
(df.groupby(['node1', 'node2'])
.first()
.fillna(0, downcast='infer')
.weight
.unstack())
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Another option is setting the underlying array values directly.
df2 = pd.DataFrame(0, index=vals, columns=vals)
f = df2.index.get_indexer
df2.values[f(df.node1), f(df.node2)] = df.weight.values
print(df2)
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Decided to have a little fun with the problem.
You can convert node1
and node2
to Categorical dtype and then use groupby
.
from functools import partial
vals = np.unique(df[['node1', 'node2']])
p = partial(pd.Categorical, categories=vals)
df['node1'], df['node2'] = p(df['node1']), p(df['node2'])
(df.groupby(['node1', 'node2'])
.first()
.fillna(0, downcast='infer')
.weight
.unstack())
node2 a b c d
node1
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
Another option is setting the underlying array values directly.
df2 = pd.DataFrame(0, index=vals, columns=vals)
f = df2.index.get_indexer
df2.values[f(df.node1), f(df.node2)] = df.weight.values
print(df2)
a b c d
a 0 0 1 0
b 0 0 2 0
c 0 0 0 0
d 0 0 3 0
edited Nov 11 at 9:13
answered Nov 11 at 5:53
coldspeed
111k17101170
111k17101170
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53246086%2fconvert-list-of-edges-dataframe-to-adjacency-matrix-dataframe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown