How to add my parameters (weight, bias) to arguments in symbol?










1














I am trying to modify the weight of convolution like this.
To do this, I make, initialize my parameters(weight, bias), convolute input image using them.
But, it shows an error because my parameters are not arguments in symbol.



How to add my parameters to arguments in symbol?
If you let me know, I would be very grateful.










share|improve this question

















  • 1




    Hey, could you give more info about the type of error and also the code you are currently using. I will be able to help out in a better way. Thanks
    – Chaitanya Bapat
    Nov 15 '18 at 19:36















1














I am trying to modify the weight of convolution like this.
To do this, I make, initialize my parameters(weight, bias), convolute input image using them.
But, it shows an error because my parameters are not arguments in symbol.



How to add my parameters to arguments in symbol?
If you let me know, I would be very grateful.










share|improve this question

















  • 1




    Hey, could you give more info about the type of error and also the code you are currently using. I will be able to help out in a better way. Thanks
    – Chaitanya Bapat
    Nov 15 '18 at 19:36













1












1








1


1





I am trying to modify the weight of convolution like this.
To do this, I make, initialize my parameters(weight, bias), convolute input image using them.
But, it shows an error because my parameters are not arguments in symbol.



How to add my parameters to arguments in symbol?
If you let me know, I would be very grateful.










share|improve this question













I am trying to modify the weight of convolution like this.
To do this, I make, initialize my parameters(weight, bias), convolute input image using them.
But, it shows an error because my parameters are not arguments in symbol.



How to add my parameters to arguments in symbol?
If you let me know, I would be very grateful.







arguments symbols mxnet






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 13 '18 at 2:02









EunSeop Lee

61




61







  • 1




    Hey, could you give more info about the type of error and also the code you are currently using. I will be able to help out in a better way. Thanks
    – Chaitanya Bapat
    Nov 15 '18 at 19:36












  • 1




    Hey, could you give more info about the type of error and also the code you are currently using. I will be able to help out in a better way. Thanks
    – Chaitanya Bapat
    Nov 15 '18 at 19:36







1




1




Hey, could you give more info about the type of error and also the code you are currently using. I will be able to help out in a better way. Thanks
– Chaitanya Bapat
Nov 15 '18 at 19:36




Hey, could you give more info about the type of error and also the code you are currently using. I will be able to help out in a better way. Thanks
– Chaitanya Bapat
Nov 15 '18 at 19:36












1 Answer
1






active

oldest

votes


















0














If you want to pass in arguments to a Custom Operator you have to do so via the init method.



From https://github.com/apache/incubator-mxnet/issues/5580 here's a snippet illustrating what you need:



class Softmax(mx.operator.CustomOp):

def __init__(self, xxx, yyy): # arguments xxx, and yyy
self.xxx = xxx
self.yyy = yyy
def forward(self, is_train, req, in_data, out_data, aux):
x = in_data[0].asnumpy()
y = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1)))
y /= y.sum(axis=1).reshape((x.shape[0], 1))
print self.xxx, self.yyy
self.assign(out_data[0], req[0], mx.nd.array(y))

def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
l = in_data[1].asnumpy().ravel().astype(np.int)
y = out_data[0].asnumpy()
y[np.arange(l.shape[0]), l] -= 1.0
self.assign(in_grad[0], req[0], mx.nd.array(y))

@mx.operator.register("softmax")
class SoftmaxProp(mx.operator.CustomOpProp):
def __init__(self, xxx, yyy):
super(SoftmaxProp, self).__init__(need_top_grad=False)

# add parameter
self.xxx = xxx
self.yyy = yyy
def list_arguments(self):
return ['data', 'label', 'xxx', 'yyy']

def list_outputs(self):
return ['output']

def infer_shape(self, in_shape):
data_shape = in_shape[0]
label_shape = (in_shape[0][0],)
output_shape = in_shape[0]
return [data_shape, label_shape], [output_shape],

def create_operator(self, ctx, shapes, dtypes):
return Softmax(xxx=self.xxx, yyy=self.yyy)


Take a look at https://mxnet.incubator.apache.org/faq/new_op.html for full info.



Vishaal






share|improve this answer




















    Your Answer






    StackExchange.ifUsing("editor", function ()
    StackExchange.using("externalEditor", function ()
    StackExchange.using("snippets", function ()
    StackExchange.snippets.init();
    );
    );
    , "code-snippets");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "1"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53272705%2fhow-to-add-my-parameters-weight-bias-to-arguments-in-symbol%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    If you want to pass in arguments to a Custom Operator you have to do so via the init method.



    From https://github.com/apache/incubator-mxnet/issues/5580 here's a snippet illustrating what you need:



    class Softmax(mx.operator.CustomOp):

    def __init__(self, xxx, yyy): # arguments xxx, and yyy
    self.xxx = xxx
    self.yyy = yyy
    def forward(self, is_train, req, in_data, out_data, aux):
    x = in_data[0].asnumpy()
    y = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1)))
    y /= y.sum(axis=1).reshape((x.shape[0], 1))
    print self.xxx, self.yyy
    self.assign(out_data[0], req[0], mx.nd.array(y))

    def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
    l = in_data[1].asnumpy().ravel().astype(np.int)
    y = out_data[0].asnumpy()
    y[np.arange(l.shape[0]), l] -= 1.0
    self.assign(in_grad[0], req[0], mx.nd.array(y))

    @mx.operator.register("softmax")
    class SoftmaxProp(mx.operator.CustomOpProp):
    def __init__(self, xxx, yyy):
    super(SoftmaxProp, self).__init__(need_top_grad=False)

    # add parameter
    self.xxx = xxx
    self.yyy = yyy
    def list_arguments(self):
    return ['data', 'label', 'xxx', 'yyy']

    def list_outputs(self):
    return ['output']

    def infer_shape(self, in_shape):
    data_shape = in_shape[0]
    label_shape = (in_shape[0][0],)
    output_shape = in_shape[0]
    return [data_shape, label_shape], [output_shape],

    def create_operator(self, ctx, shapes, dtypes):
    return Softmax(xxx=self.xxx, yyy=self.yyy)


    Take a look at https://mxnet.incubator.apache.org/faq/new_op.html for full info.



    Vishaal






    share|improve this answer

























      0














      If you want to pass in arguments to a Custom Operator you have to do so via the init method.



      From https://github.com/apache/incubator-mxnet/issues/5580 here's a snippet illustrating what you need:



      class Softmax(mx.operator.CustomOp):

      def __init__(self, xxx, yyy): # arguments xxx, and yyy
      self.xxx = xxx
      self.yyy = yyy
      def forward(self, is_train, req, in_data, out_data, aux):
      x = in_data[0].asnumpy()
      y = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1)))
      y /= y.sum(axis=1).reshape((x.shape[0], 1))
      print self.xxx, self.yyy
      self.assign(out_data[0], req[0], mx.nd.array(y))

      def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
      l = in_data[1].asnumpy().ravel().astype(np.int)
      y = out_data[0].asnumpy()
      y[np.arange(l.shape[0]), l] -= 1.0
      self.assign(in_grad[0], req[0], mx.nd.array(y))

      @mx.operator.register("softmax")
      class SoftmaxProp(mx.operator.CustomOpProp):
      def __init__(self, xxx, yyy):
      super(SoftmaxProp, self).__init__(need_top_grad=False)

      # add parameter
      self.xxx = xxx
      self.yyy = yyy
      def list_arguments(self):
      return ['data', 'label', 'xxx', 'yyy']

      def list_outputs(self):
      return ['output']

      def infer_shape(self, in_shape):
      data_shape = in_shape[0]
      label_shape = (in_shape[0][0],)
      output_shape = in_shape[0]
      return [data_shape, label_shape], [output_shape],

      def create_operator(self, ctx, shapes, dtypes):
      return Softmax(xxx=self.xxx, yyy=self.yyy)


      Take a look at https://mxnet.incubator.apache.org/faq/new_op.html for full info.



      Vishaal






      share|improve this answer























        0












        0








        0






        If you want to pass in arguments to a Custom Operator you have to do so via the init method.



        From https://github.com/apache/incubator-mxnet/issues/5580 here's a snippet illustrating what you need:



        class Softmax(mx.operator.CustomOp):

        def __init__(self, xxx, yyy): # arguments xxx, and yyy
        self.xxx = xxx
        self.yyy = yyy
        def forward(self, is_train, req, in_data, out_data, aux):
        x = in_data[0].asnumpy()
        y = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1)))
        y /= y.sum(axis=1).reshape((x.shape[0], 1))
        print self.xxx, self.yyy
        self.assign(out_data[0], req[0], mx.nd.array(y))

        def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
        l = in_data[1].asnumpy().ravel().astype(np.int)
        y = out_data[0].asnumpy()
        y[np.arange(l.shape[0]), l] -= 1.0
        self.assign(in_grad[0], req[0], mx.nd.array(y))

        @mx.operator.register("softmax")
        class SoftmaxProp(mx.operator.CustomOpProp):
        def __init__(self, xxx, yyy):
        super(SoftmaxProp, self).__init__(need_top_grad=False)

        # add parameter
        self.xxx = xxx
        self.yyy = yyy
        def list_arguments(self):
        return ['data', 'label', 'xxx', 'yyy']

        def list_outputs(self):
        return ['output']

        def infer_shape(self, in_shape):
        data_shape = in_shape[0]
        label_shape = (in_shape[0][0],)
        output_shape = in_shape[0]
        return [data_shape, label_shape], [output_shape],

        def create_operator(self, ctx, shapes, dtypes):
        return Softmax(xxx=self.xxx, yyy=self.yyy)


        Take a look at https://mxnet.incubator.apache.org/faq/new_op.html for full info.



        Vishaal






        share|improve this answer












        If you want to pass in arguments to a Custom Operator you have to do so via the init method.



        From https://github.com/apache/incubator-mxnet/issues/5580 here's a snippet illustrating what you need:



        class Softmax(mx.operator.CustomOp):

        def __init__(self, xxx, yyy): # arguments xxx, and yyy
        self.xxx = xxx
        self.yyy = yyy
        def forward(self, is_train, req, in_data, out_data, aux):
        x = in_data[0].asnumpy()
        y = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1)))
        y /= y.sum(axis=1).reshape((x.shape[0], 1))
        print self.xxx, self.yyy
        self.assign(out_data[0], req[0], mx.nd.array(y))

        def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
        l = in_data[1].asnumpy().ravel().astype(np.int)
        y = out_data[0].asnumpy()
        y[np.arange(l.shape[0]), l] -= 1.0
        self.assign(in_grad[0], req[0], mx.nd.array(y))

        @mx.operator.register("softmax")
        class SoftmaxProp(mx.operator.CustomOpProp):
        def __init__(self, xxx, yyy):
        super(SoftmaxProp, self).__init__(need_top_grad=False)

        # add parameter
        self.xxx = xxx
        self.yyy = yyy
        def list_arguments(self):
        return ['data', 'label', 'xxx', 'yyy']

        def list_outputs(self):
        return ['output']

        def infer_shape(self, in_shape):
        data_shape = in_shape[0]
        label_shape = (in_shape[0][0],)
        output_shape = in_shape[0]
        return [data_shape, label_shape], [output_shape],

        def create_operator(self, ctx, shapes, dtypes):
        return Softmax(xxx=self.xxx, yyy=self.yyy)


        Take a look at https://mxnet.incubator.apache.org/faq/new_op.html for full info.



        Vishaal







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 20 '18 at 21:42









        Vishaal Kapoor

        844




        844



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53272705%2fhow-to-add-my-parameters-weight-bias-to-arguments-in-symbol%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Top Tejano songwriter Luis Silva dead of heart attack at 64

            政党

            天津地下鉄3号線