蛤蜊

Multi tool use
「
蛤」重定向至此。關於蛤蟆,詳見「
无尾目」。關於中国大陆网络用语中的“蛤”,詳見「
膜蛤文化」。關於詞彙,詳見「
蛤 (詞彙)」。
注意:本页面含有Unihan新版用字:「𧉻」。有关字符可能會错误显示,詳见Unicode扩展汉字。
蛤蜊
|
---|

簾蛤科的文蛤
|
科學分類
|
---|
界:
| 動物界 Animalia
| 門:
| 軟體動物門 Mollusca
| 綱:
| 雙殼綱 Bivalvia
| 目:
| 簾蛤目
|
|
科與屬
|
---|
詳細分類參看簾蛤目條目
|
蛤蜊(汉语拼音:gé lì),常被誤寫為蛤蠣,也稱為蛤、文蛤、西施舌、蚌、𧉻、花蛤(部分方言误作花甲),是雙殼綱軟體動物簾蛤目多個物種的統稱,不一定只限於蛤蜊總科的物種,但一般皆指其中某些種類可以食用的物種。
概述
蛤蜊是一種對於可食用雙殼綱貝類的泛稱。
在中國古代,蛤、或蚌泛稱具兩片相等的殼的軟體動物,有時特指文蛤[1]。蛤蜊則是指生長在東南沿海中的軟體動物[2]。
在福建地區,蛤蜊通常指泥蚶。
在台灣,可食用的雙瞉貝類都泛稱為蛤蜊,如文蛤、花蛤、粉蛤、竹蛤,相當於古代的蚶、車螯和花蛤。居住在海水中的,臺灣閩南語稱蚶仔(ham-á),主要是指文蛤。居住在淡水中的,臺灣閩南語稱蜊仔(lâ-á),或蜆,通常是指河蜆。
雙殼類通常棲於浅海、淡水或河海交界的砂質或泥質的水底。有较高的食用价值。
形态
有一束閉殼肌連於兩殼之間,用以閉殼。有強大、肌肉質的足。多數蛤類棲於淺水水域,埋於水底泥沙中免受波浪之擾。蛤將水從進水管吸進,又從出水管排出,從而進行呼吸和攝食。體型大小差異極大,從0.1公釐到1.2公尺都有[來源請求]。
許多蛤類可食,包括文蛤、花蛤、斧蛤、圓蛤、严蛤、女神蛤和軟殼蛤。
參考來源
- 書目
- 凱特·懷特曼. 張亞男; 潘晶, 编. The World encyclopedia of fush and shellfish [魚貝烹飪大全]. chef guide 01 (晨星). 2006-07-31. ISBN 986-177-018-6 (中文).
- 引用
^ 《康熙字典》:「【玉篇】蚌蛤也。【禮·月令】雀入大水爲蛤。【國語註】小曰蛤,大曰蜃。【前漢·地理志】果蓏蠃蛤,食物常足。【註】似蚌而圓。【大戴禮】蚌蛤龜珠,與月盈虧。 又魁蛤。【韻會】一名復累,老服翼所化。 又文蛤。【夢溪筆談】文蛤卽吳人所食花蛤也。 又靈蛤。【酉陽雜俎】仙藥有白水靈蛤。 又萬年蛤。【飛燕外傳】眞臘夷獻萬年蛤。 又山蛤。【本草】在山石中藏蟄,似蝦蟇而大,黃色,能吞氣飮風露。」
^ 《康熙字典》:「【類篇】蛤蜊,蟲名。海蚌也。【本草】生東南海中,白殻紫脣,大二三寸者,閩、浙以其肉充海錯。【南史·王融傳】不知許事,且食蛤蜊。」
相關條目
6GgqJXieJ5ko67DmmBMjt6ietmBo4tZ8,VXIS8u,1sUgpUn9,VD,1QktCWGJ g4khSSpQvBXqIQrW 7coimH70 tWUSN8P
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...