自行火炮

Multi tool use
英國在二次世界大戰時期服役的主教自走炮,攜帶一門25磅榴彈炮。
自行火炮(英语:Self-propelled artillery),指使用車輛底盤自備動力,无需其他車輛牵引的火炮,大多有輕装甲保護,火炮一般为榴弹炮、迫击炮、加农炮、反坦克炮、火箭炮或高射炮等。有別於一般火炮需要利用其他車輛,獸力或者是人力移動。
除了自行火炮外還有一種自運火炮或稱短途自行牵引火炮,是在需要牽引的火炮加上小型汽油引擎的輔助動力裝置APU,除了能夠協助射擊時的操作,還可以做短距離的行動,但是這一種設計並未包含在自走炮的歸類當中,仍屬於牽引火砲如芬蘭155 GH 52 APU。
設計
自走炮(自走火炮)发展自火炮,其設計需求是為了跟上摩托化部隊的運動力,以維持火力支援。當摩托化或者是機械化部隊的比例增長的時候,自走炮的需求也隨之成長。
自走炮使用的車輛底盤包括改裝自戰車、裝甲車或平板卡車等,或是專門設計的履帶或是輪型載具等。火炮裝置的方式有直接將牽引火炮放置在車輛上,採用固定,頂部開放的作戰艙,固定但是頂部有保護的作戰艙,或者是完全封閉並且可以旋轉的炮塔。
與戰車的差異
自走炮與戰車在外型上有相似之處,有些戰車的設計也以提供步兵火力支援為主要任務之一,但自行火炮本质上仍与坦克不同。前者仍属于后方支援的炮兵武器,只是可以自行驱动无须牵引。后者则是前线突击武器。因此各方面作战性能上双方有不少区别。
- 戰車对防御要求很高,因此重量高、裝甲厚,以便抵抗敌方火力。自走炮因为主要部署在战线后方,对防御要求不高。裝甲只以防護機槍、小口徑機炮或者是炮彈近距離的碎片為目的。
- 戰車的戰車炮為了貫穿戰車裝甲,因此火炮炮口初速較高;自走炮則不需要。
- 戰車需要高命中率,因此瞄准系统精密。自走炮以間接瞄準的遠距離炮擊、火力覆盖為主,对瞄准要求不高,有些自走炮並未配備直接瞄準用的瞄準具。
- 戰車不需要強調高仰角射擊能力;而自走炮为了追求火力覆盖范围,需要这方面的性能。
- 戰車多在前線地段直接作戰,需要应付瞬息万变的战况,对运动性能和砲口靈活度要求高;自走炮因为主要在后方进行火力支援,故只需重視火力,无须过分追求运动性能砲口靈活度。也因此不少自走炮只採用簡易的驅動系統,甚至沒有旋轉砲塔的設計。
- 自走炮大多彈藥下降時間長。
驅逐戰車
驅逐戰車為自走炮的延伸,與自走炮一樣,搭載了重火力的炮管,同時很多也無旋轉砲塔的設計,但不同的是驅逐戰車強化了裝甲和車輛性能,使它能與一般戰車一樣快速進入戰場進行火力支援。不過驅逐戰車多數無高仰角射擊能力,因此射程較為受限,同時較一般戰車而言驅逐戰車多數缺乏靈活度高的旋轉砲塔,攻擊應變力較差,較適合定點部署狙擊進攻敵人的防禦性作戰。驅逐戰車當中也有有砲塔,如:美國的M10狼獾、M18地獄貓、M36傑克遜等的砲塔有頂可360度旋轉。
参见
规范控制 | - AAT: 300036956
- BNF: cb12164860w (data)
- GND: 4315473-6
- LCCN: sh85008257
- NARA: 10674818
|
---|
|
y,oiQAgmB mwEiiL,Iy2
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...