Simulate 100 AR(2) time series
up vote
0
down vote
favorite
I need help with R programming.
Simulate 100 AR(2) time series with sample size n= 50 and e_t ~ N(0,1).
Model: y_t= 0.1*y_t-1 + 0.5*y_t-2 + e_t
My question is out of 100 how many models will follow AR(2).
I have posted the code for 10 simulation (for practice). From the output, it is clearly seen that 7 out of 10 follow AR(2). I need the codes to calculate that for me because I want the number of simulation to be 100.
Thank you in advance.
R codes:
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
for(i in 1:10)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
Output:
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3 ar4
0.1324752 0.6986000 -0.1366014 -0.2661816
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
r time-series
add a comment |
up vote
0
down vote
favorite
I need help with R programming.
Simulate 100 AR(2) time series with sample size n= 50 and e_t ~ N(0,1).
Model: y_t= 0.1*y_t-1 + 0.5*y_t-2 + e_t
My question is out of 100 how many models will follow AR(2).
I have posted the code for 10 simulation (for practice). From the output, it is clearly seen that 7 out of 10 follow AR(2). I need the codes to calculate that for me because I want the number of simulation to be 100.
Thank you in advance.
R codes:
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
for(i in 1:10)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
Output:
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3 ar4
0.1324752 0.6986000 -0.1366014 -0.2661816
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
r time-series
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I need help with R programming.
Simulate 100 AR(2) time series with sample size n= 50 and e_t ~ N(0,1).
Model: y_t= 0.1*y_t-1 + 0.5*y_t-2 + e_t
My question is out of 100 how many models will follow AR(2).
I have posted the code for 10 simulation (for practice). From the output, it is clearly seen that 7 out of 10 follow AR(2). I need the codes to calculate that for me because I want the number of simulation to be 100.
Thank you in advance.
R codes:
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
for(i in 1:10)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
Output:
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3 ar4
0.1324752 0.6986000 -0.1366014 -0.2661816
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
r time-series
I need help with R programming.
Simulate 100 AR(2) time series with sample size n= 50 and e_t ~ N(0,1).
Model: y_t= 0.1*y_t-1 + 0.5*y_t-2 + e_t
My question is out of 100 how many models will follow AR(2).
I have posted the code for 10 simulation (for practice). From the output, it is clearly seen that 7 out of 10 follow AR(2). I need the codes to calculate that for me because I want the number of simulation to be 100.
Thank you in advance.
R codes:
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
for(i in 1:10)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
Output:
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3 ar4
0.1324752 0.6986000 -0.1366014 -0.2661816
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
r time-series
r time-series
edited Nov 10 at 21:44
asked Nov 10 at 21:25
ALRADDADI
43
43
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
count <- 0
for(i in 1:100)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
if(length(my_coefficients) == 2)
count <- count + 1
print(paste0("AR(2) model count is: ", count))
Thank you so much!
– ALRADDADI
Nov 10 at 22:05
No prob. If it helped you can accept this answer.
– Aleksandr
Nov 11 at 6:17
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
count <- 0
for(i in 1:100)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
if(length(my_coefficients) == 2)
count <- count + 1
print(paste0("AR(2) model count is: ", count))
Thank you so much!
– ALRADDADI
Nov 10 at 22:05
No prob. If it helped you can accept this answer.
– Aleksandr
Nov 11 at 6:17
add a comment |
up vote
0
down vote
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
count <- 0
for(i in 1:100)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
if(length(my_coefficients) == 2)
count <- count + 1
print(paste0("AR(2) model count is: ", count))
Thank you so much!
– ALRADDADI
Nov 10 at 22:05
No prob. If it helped you can accept this answer.
– Aleksandr
Nov 11 at 6:17
add a comment |
up vote
0
down vote
up vote
0
down vote
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
count <- 0
for(i in 1:100)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
if(length(my_coefficients) == 2)
count <- count + 1
print(paste0("AR(2) model count is: ", count))
library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
count <- 0
for(i in 1:100)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)
if(length(my_coefficients) == 2)
count <- count + 1
print(paste0("AR(2) model count is: ", count))
answered Nov 10 at 21:43
Aleksandr
1,361716
1,361716
Thank you so much!
– ALRADDADI
Nov 10 at 22:05
No prob. If it helped you can accept this answer.
– Aleksandr
Nov 11 at 6:17
add a comment |
Thank you so much!
– ALRADDADI
Nov 10 at 22:05
No prob. If it helped you can accept this answer.
– Aleksandr
Nov 11 at 6:17
Thank you so much!
– ALRADDADI
Nov 10 at 22:05
Thank you so much!
– ALRADDADI
Nov 10 at 22:05
No prob. If it helped you can accept this answer.
– Aleksandr
Nov 11 at 6:17
No prob. If it helped you can accept this answer.
– Aleksandr
Nov 11 at 6:17
add a comment |
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53243565%2fsimulate-100-ar2-time-series%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown