Simulate 100 AR(2) time series









up vote
0
down vote

favorite












I need help with R programming.



Simulate 100 AR(2) time series with sample size n= 50 and e_t ~ N(0,1).



Model: y_t= 0.1*y_t-1 + 0.5*y_t-2 + e_t



My question is out of 100 how many models will follow AR(2).



I have posted the code for 10 simulation (for practice). From the output, it is clearly seen that 7 out of 10 follow AR(2). I need the codes to calculate that for me because I want the number of simulation to be 100.



Thank you in advance.



R codes:



 library(FitAR)
set.seed(54321)
n=50
phi <- c(0.1,0.5)
for(i in 1:10)
yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
fit.monthly <- arima(yt, order = c(p, 0, 0))
my_coefficients =fit.monthly$coef
my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
print(my_coefficients)


Output:



 ar1 ar2 
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3 ar4
0.1324752 0.6986000 -0.1366014 -0.2661816
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2 ar3
0.1762949 0.5444131 -0.1720464
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714
ar1 ar2
0.07786595 0.53429714









share|improve this question



























    up vote
    0
    down vote

    favorite












    I need help with R programming.



    Simulate 100 AR(2) time series with sample size n= 50 and e_t ~ N(0,1).



    Model: y_t= 0.1*y_t-1 + 0.5*y_t-2 + e_t



    My question is out of 100 how many models will follow AR(2).



    I have posted the code for 10 simulation (for practice). From the output, it is clearly seen that 7 out of 10 follow AR(2). I need the codes to calculate that for me because I want the number of simulation to be 100.



    Thank you in advance.



    R codes:



     library(FitAR)
    set.seed(54321)
    n=50
    phi <- c(0.1,0.5)
    for(i in 1:10)
    yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
    p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
    fit.monthly <- arima(yt, order = c(p, 0, 0))
    my_coefficients =fit.monthly$coef
    my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
    print(my_coefficients)


    Output:



     ar1 ar2 
    0.07786595 0.53429714
    ar1 ar2
    0.07786595 0.53429714
    ar1 ar2
    0.07786595 0.53429714
    ar1 ar2 ar3 ar4
    0.1324752 0.6986000 -0.1366014 -0.2661816
    ar1 ar2 ar3
    0.1762949 0.5444131 -0.1720464
    ar1 ar2
    0.07786595 0.53429714
    ar1 ar2 ar3
    0.1762949 0.5444131 -0.1720464
    ar1 ar2
    0.07786595 0.53429714
    ar1 ar2
    0.07786595 0.53429714
    ar1 ar2
    0.07786595 0.53429714









    share|improve this question

























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I need help with R programming.



      Simulate 100 AR(2) time series with sample size n= 50 and e_t ~ N(0,1).



      Model: y_t= 0.1*y_t-1 + 0.5*y_t-2 + e_t



      My question is out of 100 how many models will follow AR(2).



      I have posted the code for 10 simulation (for practice). From the output, it is clearly seen that 7 out of 10 follow AR(2). I need the codes to calculate that for me because I want the number of simulation to be 100.



      Thank you in advance.



      R codes:



       library(FitAR)
      set.seed(54321)
      n=50
      phi <- c(0.1,0.5)
      for(i in 1:10)
      yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
      p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
      fit.monthly <- arima(yt, order = c(p, 0, 0))
      my_coefficients =fit.monthly$coef
      my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
      print(my_coefficients)


      Output:



       ar1 ar2 
      0.07786595 0.53429714
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2 ar3 ar4
      0.1324752 0.6986000 -0.1366014 -0.2661816
      ar1 ar2 ar3
      0.1762949 0.5444131 -0.1720464
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2 ar3
      0.1762949 0.5444131 -0.1720464
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2
      0.07786595 0.53429714









      share|improve this question















      I need help with R programming.



      Simulate 100 AR(2) time series with sample size n= 50 and e_t ~ N(0,1).



      Model: y_t= 0.1*y_t-1 + 0.5*y_t-2 + e_t



      My question is out of 100 how many models will follow AR(2).



      I have posted the code for 10 simulation (for practice). From the output, it is clearly seen that 7 out of 10 follow AR(2). I need the codes to calculate that for me because I want the number of simulation to be 100.



      Thank you in advance.



      R codes:



       library(FitAR)
      set.seed(54321)
      n=50
      phi <- c(0.1,0.5)
      for(i in 1:10)
      yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
      p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
      fit.monthly <- arima(yt, order = c(p, 0, 0))
      my_coefficients =fit.monthly$coef
      my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
      print(my_coefficients)


      Output:



       ar1 ar2 
      0.07786595 0.53429714
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2 ar3 ar4
      0.1324752 0.6986000 -0.1366014 -0.2661816
      ar1 ar2 ar3
      0.1762949 0.5444131 -0.1720464
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2 ar3
      0.1762949 0.5444131 -0.1720464
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2
      0.07786595 0.53429714
      ar1 ar2
      0.07786595 0.53429714






      r time-series






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 10 at 21:44

























      asked Nov 10 at 21:25









      ALRADDADI

      43




      43






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          library(FitAR)
          set.seed(54321)
          n=50
          phi <- c(0.1,0.5)

          count <- 0

          for(i in 1:100)
          yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
          p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
          fit.monthly <- arima(yt, order = c(p, 0, 0))
          my_coefficients =fit.monthly$coef
          my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
          print(my_coefficients)

          if(length(my_coefficients) == 2)
          count <- count + 1



          print(paste0("AR(2) model count is: ", count))





          share|improve this answer




















          • Thank you so much!
            – ALRADDADI
            Nov 10 at 22:05










          • No prob. If it helped you can accept this answer.
            – Aleksandr
            Nov 11 at 6:17










          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53243565%2fsimulate-100-ar2-time-series%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote













          library(FitAR)
          set.seed(54321)
          n=50
          phi <- c(0.1,0.5)

          count <- 0

          for(i in 1:100)
          yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
          p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
          fit.monthly <- arima(yt, order = c(p, 0, 0))
          my_coefficients =fit.monthly$coef
          my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
          print(my_coefficients)

          if(length(my_coefficients) == 2)
          count <- count + 1



          print(paste0("AR(2) model count is: ", count))





          share|improve this answer




















          • Thank you so much!
            – ALRADDADI
            Nov 10 at 22:05










          • No prob. If it helped you can accept this answer.
            – Aleksandr
            Nov 11 at 6:17














          up vote
          0
          down vote













          library(FitAR)
          set.seed(54321)
          n=50
          phi <- c(0.1,0.5)

          count <- 0

          for(i in 1:100)
          yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
          p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
          fit.monthly <- arima(yt, order = c(p, 0, 0))
          my_coefficients =fit.monthly$coef
          my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
          print(my_coefficients)

          if(length(my_coefficients) == 2)
          count <- count + 1



          print(paste0("AR(2) model count is: ", count))





          share|improve this answer




















          • Thank you so much!
            – ALRADDADI
            Nov 10 at 22:05










          • No prob. If it helped you can accept this answer.
            – Aleksandr
            Nov 11 at 6:17












          up vote
          0
          down vote










          up vote
          0
          down vote









          library(FitAR)
          set.seed(54321)
          n=50
          phi <- c(0.1,0.5)

          count <- 0

          for(i in 1:100)
          yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
          p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
          fit.monthly <- arima(yt, order = c(p, 0, 0))
          my_coefficients =fit.monthly$coef
          my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
          print(my_coefficients)

          if(length(my_coefficients) == 2)
          count <- count + 1



          print(paste0("AR(2) model count is: ", count))





          share|improve this answer












          library(FitAR)
          set.seed(54321)
          n=50
          phi <- c(0.1,0.5)

          count <- 0

          for(i in 1:100)
          yt <- unclass(arima.sim(n=n,list(ar=phi),innov=rnorm(n,0,1)))
          p=SelectModel(as.ts(yt), lag.max = 20, Criterion = "BIC", Best=1)
          fit.monthly <- arima(yt, order = c(p, 0, 0))
          my_coefficients =fit.monthly$coef
          my_coefficients=my_coefficients[!names(my_coefficients) == 'intercept']
          print(my_coefficients)

          if(length(my_coefficients) == 2)
          count <- count + 1



          print(paste0("AR(2) model count is: ", count))






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 10 at 21:43









          Aleksandr

          1,361716




          1,361716











          • Thank you so much!
            – ALRADDADI
            Nov 10 at 22:05










          • No prob. If it helped you can accept this answer.
            – Aleksandr
            Nov 11 at 6:17
















          • Thank you so much!
            – ALRADDADI
            Nov 10 at 22:05










          • No prob. If it helped you can accept this answer.
            – Aleksandr
            Nov 11 at 6:17















          Thank you so much!
          – ALRADDADI
          Nov 10 at 22:05




          Thank you so much!
          – ALRADDADI
          Nov 10 at 22:05












          No prob. If it helped you can accept this answer.
          – Aleksandr
          Nov 11 at 6:17




          No prob. If it helped you can accept this answer.
          – Aleksandr
          Nov 11 at 6:17

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53243565%2fsimulate-100-ar2-time-series%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Top Tejano songwriter Luis Silva dead of heart attack at 64

          政党

          天津地下鉄3号線