肛门

Multi tool use肛門(又称魄门、后阴、谷道,俗稱屎眼[1]、屁眼、腚眼、尻洞、尻穴)是高等動物消化系統消化道的最末端,在直腸延伸至體外的開口處,是糞便排遺和消化系統废气(屁)的出口。由於其與排泄相關,有時也被歸類到排泄系統的一部分。
生物學
肛門周圍於青春期之後,尤其成年男性,常有黑色肛毛生長,从肛门口延伸到阴囊底部,与肛門相关的疾病有痔瘡、瘺管及肛裂等。[2]
人類文化
肛门被大部分的人視為隐秘部位,其影像被許多國家視為色情的影像,需要經過馬賽克處理。
因外形貌像菊花,在台灣、香港、日本、中國大陸等地區,菊花是肛门的隱語。
肛門是生殖器附近的性敏感带,被部分人群用以进行肛门性交。
人類可以將物品從肛門塞入以運送物品,通常用於走私金錢、毒品或其他違禁品。清朝末年大內銀庫庫兵經常用肛門夾帶白銀[3]。现代贩毒集团亦有采用肛门藏毒的方式远距离贩运毒品,以图逃避毒品夹带的检查[4]。
參考文獻
^ 查字典:屎眼. 粵典 words.hk
^ 肛裂,肛裂治疗_疾病专题_全民健康网
^ 張祖翼:《清代野記》卷上三五:“初至京師,聞光景卿戶部言戶部銀庫庫兵事,不禁狂噱,竊以景卿之言為太甚,及目睹始知之。戶部各差以銀庫郎中為最優,三年一任,任滿,貪者可餘二十萬,至廉者亦能餘十萬。”
^ 台湾男子肛门藏毒363克闯关失败 用保险套包裹,搜狐网,2008年01月25日
 | 查询維基詞典中的肛门。 |
 | 维基共享资源中相关的多媒体资源:肛门
|
人體區域解剖學
|
---|
| 頭 | |
---|
| 頸 | |
---|
| 軀幹 | |
---|
| 肢 |
|
---|
| 大體解剖:系統及器官、區域解剖、解剖平面及基準線、中軸表面解剖、附肢表面解剖
|
|
躯干的解剖,消化系统:胃肠道(Gastrointestinal tract),不包括口腔(TA A05.3–7、TH H3.04.02-04、GA 11.1141)
|
---|
|
上消化道 |
|
---|
|
下消化道 |
腸臟: 小肠
|
层 | |
---|
| 十二指肠 | - 十二指腸懸肌
- 十二指肠大乳头
- 十二指肠小乳头
- 十二指肠球部
- 十二指肠空肠曲
- 十二指肠腺
|
---|
| 空肠 | |
---|
| 回肠 | |
---|
|
---|
| 腸臟:大肠
|
|
---|
|
---|
|
消化系統索引
|
---|
| 描述 | |
---|
| 疾病 | |
---|
| 治療 | - 治療過程
- 藥物
- 合成代谢类固醇
- 抗酸药
- 腹瀉及感染
- 肝胆病治療
- 功能性胃腸疾病
- 轻泻药
- 消化道潰瘍和胃食管反流病治療
- 止吐
- 其他
- 手術
|
---|
|
规范控制 | - GND: 4280076-6
- LCCN: sh85005826
- NDL: 00566526
|
---|
|
人体系统与器官
|
---|
| 肌肉骨骼系统 |
人體骨架 | 骨骼
- 腕骨
- 锁骨
- 股骨
- 腓骨
- 肱骨
- 下顎
- 掌骨
- 跖骨
- 听小骨
- 髕骨
- 指頭的骨頭
- 桡骨
- 颅骨
- 跗骨
- 胫骨
- 尺骨
- 肋骨
- 脊椎
- 骨盆
- 胸骨
- 软骨
|
---|
| 关节 | - Fibrous joint
- Cartilaginous joint
- 滑液關節
|
---|
| 肌肉系统 | |
---|
|
---|
| 循环系统 |
|
---|
| 神经系统 | |
---|
| 表皮系統 | |
---|
| 免疫系统 | |
---|
| 呼吸系統 | |
---|
| 消化系统 | |
---|
| 泌尿系統 | |
---|
| 生殖系统 | |
---|
| 內分泌系統 | |
---|
| 大體解剖:系統及器官、區域解剖、解剖平面及基準線、中軸表面解剖、附肢表面解剖
|
|
6Q,r2GwXnHBUP
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...