^(英文)Hunter CJ, Upperman JS, Ford HR, Camerini V. Understanding the susceptibility of the premature infant to necrotizing enterocolitis (NEC). Pediatric Research. February 2008, 63 (2): 117–23. PMID 18091350. doi:10.1203/PDR.0b013e31815ed64c.
^(英文)Leigh L, Stoll BJ, Rahman M, McGowan J. Pseudomonas aeruginosa infection in very low birth weight infants: a case-control study. The Pediatric Infectious Disease Journal. May 1995, 14 (5): 367–71. PMID 7638011. doi:10.1097/00006454-199505000-00006.
^(英文)Cotten CM, Taylor S, Stoll B; 等. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. January 2009, 123 (1): 58–66. PMC 2760222. PMID 19117861. doi:10.1542/peds.2007-3423. 引文格式1维护:显式使用等标签 (link)
^(英文)Schanler RJ (2001) The use of human milk for premature infants
查
论
编
起源於圍產期的某些情況/胎兒疾病(P、760–779)
母體因素及 妊娠並發症、 陣痛及分娩
胎盤疾病:
前置胎盤
胎盤機能不全
双胎输血综合征
絨毛膜/羊膜:
絨毛膜羊膜炎
脐带:
臍帶脫垂
臍帶繞頸
單臍動脈
妊娠和胎兒生長長度
小於胎齡/大於胎齡
早產/過期妊娠
胎兒宮內生長受限
產傷
頭皮
頭顱血腫
髮髻
胎頭水腫
帽狀腱膜失血
臂叢神經損傷
歐勃氏麻痺
克隆普克麻痺
系統性
呼吸系统疾病
子宮內缺氧
嬰兒呼吸窘迫綜合徵
新生兒暫時性呼吸急促
胎糞吸入綜合徵(MAS)
胸膜疾病
氣胸
縱隔氣腫
威爾遜-米其地綜合徵(肺成熟障礙綜合徵)
支氣管肺發育異常
心血管疾病
積氣
持續性胎兒循環
出血及 血液病
維生素K缺乏症
新生兒出血性疾病
HDN
ABO
anti-Kell1
Rh c
Rh D
Rh E
胎兒水腫
高膽紅素血症
核黃疸
新生兒黃疸
臍帶帆狀附著
腦室內出血
胚層出血
早產兒貧血
胃腸道疾病
腸梗阻
坏死性小肠结肠炎
胎糞性腹膜炎
表皮系統及 體溫調節
新生兒中毒性紅斑
新生兒硬腫症
神經系統疾病
腦室周圍白質軟化
肌肉骨骼疾病
灰嬰症候群
肌張力
肌張力亢進
肌張力低下
傳染病
垂直傳播感染
先天性風疹綜合徵
新生兒單純皰疹
臍炎
新生兒敗血症
B組鏈球菌感染
新生兒結膜炎
其它情況
周產期死亡
死產
嬰兒死亡率
新生兒戒斷
医学导航: 产科
生理/发育/薄膜(英语:Template:Extraembryonic and fetal membranes)
病理(英语:Template:Pathology of pregnancy, childbirth and the puerperium)/条件源/母体传递(英语:Template:Diseases of maternal transmission), 齐名(英语:Template:Eponymous medical signs for obstetrics)
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...