Thermal resistance
(Q899628)

Multi tool use
Thermal resistance
(Q899628)
From Wikidata
Jump to navigation
Jump to search
Statements
Identifiers
1 reference
imported from Wikimedia project
National Central Library of Florence
Sitelinks
Wikipedia(21 entries)
edit
cawiki
Resistència tèrmica
dewiki
Wärmewiderstand
enwiki
Thermal resistance
eswiki
Resistencia térmica
fawiki
مقاومت حرارتی
fiwiki
Lämpöresistanssi
frwiki
Résistance thermique de conduction
glwiki
Resistencia térmica
hiwiki
तापीय प्रतिरोध
hrwiki
Toplinski otpor
itwiki
Resistenza termica
jawiki
熱抵抗
nlwiki
Thermische weerstand
plwiki
Rezystancja termiczna
pswiki
د تودوخې کېښت
ruwiki
Термическое сопротивление
simplewiki
Thermal resistance
skwiki
Tepelný odpor
ukwiki
Термічний опір
zh_yuewiki
熱阻
zhwiki
熱阻
Wikisource(0 entries)
edit
Wikiversity(0 entries)
edit
Wikivoyage(0 entries)
edit
Wiktionary(0 entries)
edit
Other sites(0 entries)
edit

Navigation menu
Personal tools
- English
- Not logged in
- Talk
- Contributions
- Create account
- Log in
Navigation
- Main page
- Community portal
- Project chat
- Create a new Item
- Create a new Lexeme
- Recent changes
- Random item
- Query Service
- Nearby
- Help
- Donate
Tools
- What links here
- Related changes
- Special pages
- Permanent link
- Page information
- Concept URI
- Cite this page
(window.RLQ=window.RLQ||).push(function()mw.config.set("wgBackendResponseTime":107,"wgHostname":"mw1269"););
76GM8,L0 6IShIoI
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...