COM+

Multi tool use微軟元件服務(Microsoft Component Services,俗稱為COM+)是微軟在Windows 2000開始,針對Microsoft Transaction Server所強化更新的COM服務實作,作為Windows平台上的應用程式伺服器服務,目前的版本為1.5(Windows XP、Windows Server 2003以後的版本),是利用微軟平台開發分散式應用程式不可或缺的一個服務,就連.NET Framework也提供System.EnterpriseServices.dll以支援COM+的開發。
服務
COM+目前已有十九種服務:
- COM+ Application Pooling:提供單一執行緒(single thread)應用程式的擴充能力,並且提供由其他應用程式來復原中斷的應用程式的能力。
- COM+ Application Recycling:提供應用程式自動回收(recycle)的能力。
- COM+ Applications Running as NT Services:允許元件可以與Windows Service的方式來執行。
- COM+ Compensating Resource Manager:提供交易元件補償能力的機制。
- COM+ Events:鬆散藕合式事件的支援。
- COM+ Instrumentation:COM+應用程式與元件的效能資訊評估。
- COM+ Just-in-Time Activation:COM+元件的即時活化(JIT-activation)能力。
- COM+ Low-Memory Activation Gates:在記憶體不足時通報COM+核心,使用虛擬記憶體來啟動元件。
- COM+ Object Constructor Strings:使用建構式字串來活化元件。
- COM+ Object Pooling:將物件暫存在暫存區中,待應用程式呼叫時取用,可減少資源耗用。
- COM+ Partitions:提供不同版本的COM+元件的相容性。
- COM+ Queued Components:開發支援MSMQ元件的實作。
- COM+ Resource Dispenser Service:在COM+元件間存取共享資訊的服務。
- COM+ Security:COM+提供角色為主(Role-Based)安全性。
- COM+ Services Without Components:可讓元件在不安裝於COM+服務之下,叫用COM+的服務。
- COM+ Shared Property Manager:在元件中使用Shared Property Manager來做狀態轉移的服務。
- COM+ SOAP Service:顯露COM+元件為Web Service。
- COM+ Synchronization:在COM+元件之間進行同步化。
- COM+ Transactions:由MTS強化而來,元件的交易服務。
外部連結
D5Ej,sLppfkxa6xzV6QX3GfPGfdQ,Mzz5qqN7g7JdH36AzDjHLsL6,e
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...