鈴木梅太郎

Multi tool usebody.skin-minerva .mw-parser-output table.infobox captiontext-align:center
鈴木梅太郎 鈴木 梅太郎(すずき うめたろう) |
---|
 鈴木梅太郎
|
出生 | 1874年4月7日 日本静岡縣榛原郡堀野新田村(現牧之原市)
|
---|
逝世 | 1943年9月20日(1943-09-20)(69歲) 日本東京都新宿區
|
---|
国籍 |
日本
|
---|
母校 | 帝國大學農科大學 |
---|
知名于 | 發現硫胺
|
---|
奖项 | 文化勳章 正三位勲一等瑞宝章
|
---|
科学生涯
|
研究領域 | 化學
|
---|
机构 | 理化学研究所 東京帝國大學 東京農業大學
|
---|
日語寫法 |
---|
日語原文 | 鈴木 梅太郎
|
---|
假名 | すずき うめたろう
|
---|
平文式罗马字 | Suzuki Umetarō
|
---|
鈴木梅太郎(日语:鈴木 梅太郎/すずき うめたろう Suzuki Umetarō,1874年4月7日-1943年9月20日),日本化学家、維生素專家。曾任東京帝國大學名譽教授,也是理化學研究所創始人之一。帝國學士院會員。文化勳章表彰。
鈴木梅太郎是成功提取硫胺的世界第一人,兩度名列「日本十大發明家」。但因諾貝爾委員會的評選疏失,未能獲得諾貝爾化學獎[1]。
生平
静岡縣榛原郡堀野新田村出身[2]。帝國大學農科大學(現·東京大學農學部)畢業。
歷任東京帝國大學教授、理化學研究所創始人之一。帝大退休後,轉任東京農業大學農業化學科教授。
貢獻
- 成功提取硫胺。
- 發明腳氣病治療法。
- 發明合成清酒「利久」。
紀念
鈴木家鄉靜岡縣的「鈴木梅太郎博士彰顯會」每年甄選縣內撰寫優秀理科論文的初中、高中學生,頒發「鈴木梅太郎獎」。靜岡縣立大學谷田校區設有鈴木的胸像與紀念碑。
參見
維生素(硫胺)
- 高木兼寛
- 日本十大發明家
- 克里斯蒂安·艾克曼
- 諾貝爾獎爭議
- 日本人諾貝爾獎得主
參考資料
^ Suzuki, U., Shimamura, T. Active constituent of rice grits preventing bird polyneuritis. Tokyo Kagaku Kaishi. 1911, 32: 4–7; 144–146; 335–358.
^ 堀野新田村→地頭方村→相良町→牧之原市。
规范控制 | - WorldCat Identities
- CiNii: DA00756255
- FAST: 164461
- GND: 1045334391
- ISNI: 0000 0000 8440 7377
- LCCN: n85124971
- NDL: 00076215
- VIAF: 35886696
|
---|
|
baFedmPa5MtVoP 40Rs ykY6,OH7pbx8VJ1
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...