(Keras-Tensorflow) How to crop an output tensor depending on another output's value?



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








0















I am doing a keras application that predicts a group of coordinates from a 3D Image Input. My architecture is the following :



img_input = keras.layers.Input((96,64,64,1))

x = keras.layers.Conv3D(32, (3, 3 ,3), activation='relu', padding='same', name='block1_conv1',trainable=True)(img_input)
x = keras.layers.Conv3D(32, (3, 3 ,3), activation='relu', padding='same', name='block1_conv2',trainable=True)(x)
x = keras.layers.MaxPooling3D((2, 2, 2), name='block1_pool')(x)

# Block 2
x = keras.layers. Conv3D(64, (3, 3 ,3), activation='relu', padding='same', name='block2_conv1',trainable=True)(x)
x = keras.layers.Conv3D(64, (3, 3 ,3), activation='relu', padding='same', name='block2_conv2',trainable=True)(x)
x = keras.layers.MaxPooling3D((2, 2 ,2), name='block2_pool')(x)

# Block 3
x = keras.layers.Conv3D(128, (3, 3 ,3), activation='relu', padding='same', name='block3_conv1',trainable=True)(x)
x = keras.layers.Conv3D(128, (3, 3 , 3), activation='relu', padding='same', name='block3_conv2',trainable=True)(x)
x = keras.layers.MaxPooling3D((2, 2 ,2), name='block3_pool')(x)

# Block 3
x = keras.layers.Conv3D(128, (3, 3 ,3), activation='relu', padding='same', name='block4_conv1',trainable=True)(x)
x = keras.layers.Conv3D(128, (3, 3 , 3), activation='relu', padding='same', name='block4_conv2',trainable=True)(x)
x = keras.layers.MaxPooling3D((2, 2 ,2), name='block4_pool')(x)

x = keras.layers.Flatten(name='flatten')(x)

x = keras.layers.Dense(4096,activation='relu',name="fc7",trainable=True)(x)

x = keras.layers.Dense(4096,activation='relu',name="fc8",trainable=True)(x)

x = keras.layers.Dense(288,activation='linear',name="fc10",trainable=True)(x)


The fact is that,the outputs are not really of size 288, they have all variable lenght, but I zero-padded all of them in order to have a fixed-size output.



In the other hand, I also trained a neural net that predicts the lenght of these outputs giving the same 3D input and it does it pretty well.



What I want is to use the output of this second network to crop the output of my first network . For example ,if my second network predicted a value of 285,the first network will crop the output from 288 to 285.



Is it possible on keras ? Or could you give me and advice of how to do this task(Predict the good coordinates with the correct length)?



Thank you very much










share|improve this question




























    0















    I am doing a keras application that predicts a group of coordinates from a 3D Image Input. My architecture is the following :



    img_input = keras.layers.Input((96,64,64,1))

    x = keras.layers.Conv3D(32, (3, 3 ,3), activation='relu', padding='same', name='block1_conv1',trainable=True)(img_input)
    x = keras.layers.Conv3D(32, (3, 3 ,3), activation='relu', padding='same', name='block1_conv2',trainable=True)(x)
    x = keras.layers.MaxPooling3D((2, 2, 2), name='block1_pool')(x)

    # Block 2
    x = keras.layers. Conv3D(64, (3, 3 ,3), activation='relu', padding='same', name='block2_conv1',trainable=True)(x)
    x = keras.layers.Conv3D(64, (3, 3 ,3), activation='relu', padding='same', name='block2_conv2',trainable=True)(x)
    x = keras.layers.MaxPooling3D((2, 2 ,2), name='block2_pool')(x)

    # Block 3
    x = keras.layers.Conv3D(128, (3, 3 ,3), activation='relu', padding='same', name='block3_conv1',trainable=True)(x)
    x = keras.layers.Conv3D(128, (3, 3 , 3), activation='relu', padding='same', name='block3_conv2',trainable=True)(x)
    x = keras.layers.MaxPooling3D((2, 2 ,2), name='block3_pool')(x)

    # Block 3
    x = keras.layers.Conv3D(128, (3, 3 ,3), activation='relu', padding='same', name='block4_conv1',trainable=True)(x)
    x = keras.layers.Conv3D(128, (3, 3 , 3), activation='relu', padding='same', name='block4_conv2',trainable=True)(x)
    x = keras.layers.MaxPooling3D((2, 2 ,2), name='block4_pool')(x)

    x = keras.layers.Flatten(name='flatten')(x)

    x = keras.layers.Dense(4096,activation='relu',name="fc7",trainable=True)(x)

    x = keras.layers.Dense(4096,activation='relu',name="fc8",trainable=True)(x)

    x = keras.layers.Dense(288,activation='linear',name="fc10",trainable=True)(x)


    The fact is that,the outputs are not really of size 288, they have all variable lenght, but I zero-padded all of them in order to have a fixed-size output.



    In the other hand, I also trained a neural net that predicts the lenght of these outputs giving the same 3D input and it does it pretty well.



    What I want is to use the output of this second network to crop the output of my first network . For example ,if my second network predicted a value of 285,the first network will crop the output from 288 to 285.



    Is it possible on keras ? Or could you give me and advice of how to do this task(Predict the good coordinates with the correct length)?



    Thank you very much










    share|improve this question
























      0












      0








      0








      I am doing a keras application that predicts a group of coordinates from a 3D Image Input. My architecture is the following :



      img_input = keras.layers.Input((96,64,64,1))

      x = keras.layers.Conv3D(32, (3, 3 ,3), activation='relu', padding='same', name='block1_conv1',trainable=True)(img_input)
      x = keras.layers.Conv3D(32, (3, 3 ,3), activation='relu', padding='same', name='block1_conv2',trainable=True)(x)
      x = keras.layers.MaxPooling3D((2, 2, 2), name='block1_pool')(x)

      # Block 2
      x = keras.layers. Conv3D(64, (3, 3 ,3), activation='relu', padding='same', name='block2_conv1',trainable=True)(x)
      x = keras.layers.Conv3D(64, (3, 3 ,3), activation='relu', padding='same', name='block2_conv2',trainable=True)(x)
      x = keras.layers.MaxPooling3D((2, 2 ,2), name='block2_pool')(x)

      # Block 3
      x = keras.layers.Conv3D(128, (3, 3 ,3), activation='relu', padding='same', name='block3_conv1',trainable=True)(x)
      x = keras.layers.Conv3D(128, (3, 3 , 3), activation='relu', padding='same', name='block3_conv2',trainable=True)(x)
      x = keras.layers.MaxPooling3D((2, 2 ,2), name='block3_pool')(x)

      # Block 3
      x = keras.layers.Conv3D(128, (3, 3 ,3), activation='relu', padding='same', name='block4_conv1',trainable=True)(x)
      x = keras.layers.Conv3D(128, (3, 3 , 3), activation='relu', padding='same', name='block4_conv2',trainable=True)(x)
      x = keras.layers.MaxPooling3D((2, 2 ,2), name='block4_pool')(x)

      x = keras.layers.Flatten(name='flatten')(x)

      x = keras.layers.Dense(4096,activation='relu',name="fc7",trainable=True)(x)

      x = keras.layers.Dense(4096,activation='relu',name="fc8",trainable=True)(x)

      x = keras.layers.Dense(288,activation='linear',name="fc10",trainable=True)(x)


      The fact is that,the outputs are not really of size 288, they have all variable lenght, but I zero-padded all of them in order to have a fixed-size output.



      In the other hand, I also trained a neural net that predicts the lenght of these outputs giving the same 3D input and it does it pretty well.



      What I want is to use the output of this second network to crop the output of my first network . For example ,if my second network predicted a value of 285,the first network will crop the output from 288 to 285.



      Is it possible on keras ? Or could you give me and advice of how to do this task(Predict the good coordinates with the correct length)?



      Thank you very much










      share|improve this question














      I am doing a keras application that predicts a group of coordinates from a 3D Image Input. My architecture is the following :



      img_input = keras.layers.Input((96,64,64,1))

      x = keras.layers.Conv3D(32, (3, 3 ,3), activation='relu', padding='same', name='block1_conv1',trainable=True)(img_input)
      x = keras.layers.Conv3D(32, (3, 3 ,3), activation='relu', padding='same', name='block1_conv2',trainable=True)(x)
      x = keras.layers.MaxPooling3D((2, 2, 2), name='block1_pool')(x)

      # Block 2
      x = keras.layers. Conv3D(64, (3, 3 ,3), activation='relu', padding='same', name='block2_conv1',trainable=True)(x)
      x = keras.layers.Conv3D(64, (3, 3 ,3), activation='relu', padding='same', name='block2_conv2',trainable=True)(x)
      x = keras.layers.MaxPooling3D((2, 2 ,2), name='block2_pool')(x)

      # Block 3
      x = keras.layers.Conv3D(128, (3, 3 ,3), activation='relu', padding='same', name='block3_conv1',trainable=True)(x)
      x = keras.layers.Conv3D(128, (3, 3 , 3), activation='relu', padding='same', name='block3_conv2',trainable=True)(x)
      x = keras.layers.MaxPooling3D((2, 2 ,2), name='block3_pool')(x)

      # Block 3
      x = keras.layers.Conv3D(128, (3, 3 ,3), activation='relu', padding='same', name='block4_conv1',trainable=True)(x)
      x = keras.layers.Conv3D(128, (3, 3 , 3), activation='relu', padding='same', name='block4_conv2',trainable=True)(x)
      x = keras.layers.MaxPooling3D((2, 2 ,2), name='block4_pool')(x)

      x = keras.layers.Flatten(name='flatten')(x)

      x = keras.layers.Dense(4096,activation='relu',name="fc7",trainable=True)(x)

      x = keras.layers.Dense(4096,activation='relu',name="fc8",trainable=True)(x)

      x = keras.layers.Dense(288,activation='linear',name="fc10",trainable=True)(x)


      The fact is that,the outputs are not really of size 288, they have all variable lenght, but I zero-padded all of them in order to have a fixed-size output.



      In the other hand, I also trained a neural net that predicts the lenght of these outputs giving the same 3D input and it does it pretty well.



      What I want is to use the output of this second network to crop the output of my first network . For example ,if my second network predicted a value of 285,the first network will crop the output from 288 to 285.



      Is it possible on keras ? Or could you give me and advice of how to do this task(Predict the good coordinates with the correct length)?



      Thank you very much







      python-3.x tensorflow keras conv-neural-network crop






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 16 '18 at 12:44









      MateoMateo

      133




      133






















          0






          active

          oldest

          votes












          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53338186%2fkeras-tensorflow-how-to-crop-an-output-tensor-depending-on-another-outputs-va%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53338186%2fkeras-tensorflow-how-to-crop-an-output-tensor-depending-on-another-outputs-va%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Top Tejano songwriter Luis Silva dead of heart attack at 64

          政党

          天津地下鉄3号線