井宿

Multi tool use井宿,井木犴,二十八宿之一,南方七宿第一宿。
星官
井宿有星官20個。
星官 | 星官英文名 | 註釋 | 所處星座 | 星數
|
---|
井 | Well | 水井 | 雙子座 | 8
|
鉞 | Battle Axe | 古代一種兵器(鉞音越) | 雙子座 | 1
|
南河 | South River | 井宿南面的河流 | 小犬座 | 3
|
北河 | North River | 井宿北面的河流 | 雙子座 | 3
|
天樽 | Celestial Wine Cup | 酒杯 | 雙子座 | 3
|
五諸侯 | Five Feudal Kings | 五個諸侯,分別為帝師、帝友、三公、博士、太史 | 雙子座 | 5
|
積水 | Accumulated Water | 釀酒而儲的水,或負責供水釀油煮食的官員 | 御夫座 | 1
|
積薪 | Pile of Firewood | 儲存的柴薪,或負責供應燃料給廚房的官員 | 雙子座 | 1
|
水府 | Official for Irrigation | 負責供水、灌溉或防洪工事的官員 | 獵戶座 | 4
|
水位 | Water Level | 量度水位的工具,或負責泄洪的官員 | 小犬座/巨蟹座 | 4
|
四瀆 | Four Channels | 四條大川,分別為長江、黃河、淮、濟(瀆音讀) | 麒麟座/雙子座 | 4
|
軍市 | Market for Soldiers | 為軍隊服務的市場 | 大犬座 | 6
|
野雞 | Wild Cockerel | 野雞 | 大犬座 | 1
|
丈人 | Grandfather | 老人家 | 天鴿座 | 2
|
子 | Son | 兒子 | 天鴿座 | 2
|
孫 | Grandson | 孫 | 天鴿座 | 2
|
闕邱 | Palace Gate | 宮門外的兩座小山 | 麒麟座 | 2
|
天狼 | Celestial Wolf | 天上的狼,代表侵略 | 大犬座 | 1
|
弧矢 | Bow and Arrow | 射天狼的弓箭 | 大犬座/船尾座 | 9
|
老人 | Old Man | 南極老人,即壽星公 | 船底座 | 1
|
参见
四象、七曜及二十八宿(星名对照表)
| 木 | 金 | 土 | 日 | 月 | 火 | 水
|
---|
东方青龙
| 角木蛟 | 亢金龙 | 氐土貉 | 房日兔 | 心月狐 | 尾火虎 | 箕水豹
|
---|
北方玄武
| 斗木獬 | 牛金牛 | 女土蝠 | 虚日鼠 | 危月燕 | 室火猪 | 壁水貐
|
---|
西方白虎
| 奎木狼 | 娄金狗 | 胃土雉 | 昴日鸡 | 毕月乌 | 觜火猴 | 参水猿
|
---|
南方朱雀
| 井木犴 | 鬼金羊 | 柳土獐 | 星日马 | 张月鹿 | 翼火蛇 | 轸水蚓
|
---|
南方星官
|
---|
| 井宿 | 井 · 钺 · 水府 · 天樽 · ≠五诸侯 · 北河 · ≠积水 · 积薪 · 水位 · 南河 · 四渎 · 阙丘 · 军市 · 野鸡 · 天狼 · 丈人 · 子 · 孙 · 老人 · 弧矢
|
---|
| 鬼宿 | 鬼 · ≠积尸 · 爟 · 外厨 · 天记 · 天狗 · 天社
|
---|
| 柳宿 | 柳 · 酒旗
|
---|
| 星宿 | 星 · 天相 · *天稷 · 轩辕 · 御女 · 内平
|
---|
| 张宿 | 张 · *天庙
|
---|
| 翼宿 | 翼 · *东瓯
|
---|
| 轸宿 | 轸 · 左辖 · 右辖 · 长沙 · 青丘 · *军门 · ≠*土司空 · *器府
|
---|
|
0KS,Yc7hx2bS7psPaoq4QK IKLWI 0P7B2HHpO OHhDcy6v
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...