伽马射线



伽瑪射線,或γ射線是原子衰變裂解時放出的射線之一。此種電磁波波長在0.01奈米以下,穿透力很強,又攜帶高能量,容易造成生物體細胞內的脫氧核糖核酸(DNA)斷裂進而引起細胞突變,因此也可以作醫療之用。


1900年由法國科學家保罗·维拉尔發現,他將含鐳的氯化鋇通過陰極射線,從照片記錄上看到輻射穿過0.2毫米的鉛箔,拉塞福稱這一貫穿力非常強的輻射為γ射線,是繼α射線、β射線後發現的第三種原子核射線。1913年,γ射線被證實為是電磁波,波長短于0.2 埃,和X射線特性相似但具有比X射線還要強的穿透能力。γ射線通過物質並與原子相互作用時會產生光電效應、康普頓效應和正負電子對效應。γ射线即使使用较厚材料阻挡一般也仍然有部分射线泄漏,所以通常只能用半吸收厚度来定量材料的阻隔效果。半吸收厚度是指入射射线强度减弱到一半时阻隔物体的厚度。半吸收厚度其数值d(1/2)=ln2/μ≈0.693/μ,μ表示阻隔物材料的射线吸收系数。材料的射线吸收系数与射线频率、能量以及材料种类有关,一般原子序数高和密度高的元素构成的材料其γ射线吸收系数也较高。普通放射源如Cs-137放射源产生的γ射线在铝、铁、铜、铅中的半吸收厚度分别约为3.2cm、2.6cm、1.4cm和0.6cm。




目录





  • 1 應用

    • 1.1 天文學研究


    • 1.2 灭菌


    • 1.3 医疗



  • 2 參考資料




應用




伽馬射線




α粒子相當於氦的原子核可被紙所阻擋,β粒子相當於電子可被鋁箔所阻擋,γ射線則具有高穿透性。



天文學研究


當人類觀察太空時,看到的為「可見光」,然而電磁波譜的大部份是由不同輻射組成,當中的輻射的波長有較可見光長,亦有較短,大部份單靠肉眼並不能看到。通過探測伽瑪射線能提供肉眼所看不到的太空影像。


在太空中產生的伽瑪射線是由恒星核心的核聚變產生的,因為無法穿透地球大氣層,因此無法到達地球的低層大氣層,只能在太空中被探測到。太空中的伽瑪射線是在1967年由一顆名為「維拉斯」的人造衛星首次觀測到。從20世紀70年代初由不同人造衛星所探測到的伽瑪射線圖片,提供了關於幾百顆此前並未發現到的恒星及可能的黑洞。於90年代發射的人造衛星(包括康普頓伽瑪射線觀測台),提供了關於超新星、年輕星團、類星體等不同的天文信息。



灭菌


伽马射线具有穿透性和对生物细胞的破坏作用,因此被用于对医疗用品、化妆品、香料进行灭菌。通常使用钴-60作为辐射源头。具有灭菌速度快、灭菌彻底,无化学残留无环境污染等优点。[1]



医疗


伽马射线立体定向放射治疗,又称为伽马刀,可用于对特定肿瘤患者的治疗。[2]



參考資料



  1. ^ [1],提高制药品质 辐射灭菌技术优势突出。


  2. ^ [2],精准伽玛刀对付脑疾有一手。



  • Phillis Engelbert & Diane L. Dupuis. The Handy Space Answer Book. Visible Ink Press LLC. 1998. 

可見光頻譜,紫色波長最短,紅色波長最長。



伽瑪射線⇐|X射線X射線 短X射線|紫外线|紫色|藍色|靛色|綠色|黃色|橙色|紅色|紅外線|⇒無線電波毫米波 微波 極超短波 超短波 短波 中波 長波 超長波



Popular posts from this blog

Top Tejano songwriter Luis Silva dead of heart attack at 64

政党

天津地下鉄3号線