廂型車

Multi tool use廂型車是一種用於載運貨物和多人的汽車,在亞洲有时稱為厢型车和小型客貨車,或改裝為「胖卡」(1964年VW T1)外型。通常有四輪和方廂型車體,寬高都明顯大於一般車,但是也有一些商旅車類型的車體高度並不高。而北美地區則把所有硬式貨斗頂棚的車都稱為廂型車,不論尺寸大小。较小的廂型車有时被称为多功能休旅車(Minivan)。
至於英國則專稱載客的大車卻又小於巴士的車型,而且通常有背車門。但是不論如何各國的廂型車普遍都不會大於車長(LWB)5公尺;大於的車則改稱卡車或巴士。有許多褓姆車也是廂型車改裝。
在亞洲則有時稱為麵包車,可能原因如下:[原創研究?]
- 小販拿這種車來賣麵包,把後座的椅子拆掉作上架子,擺上好幾層的麵包,然後擺攤或沿街叫賣。
- 長長的車身好像吐司麵包一樣,所以叫麵包車。
- 英文叫做Van音譯就像面,所以戲稱為麵包車。
已知車型
奧斯汀
英國汽車公司
别克
雪佛兰
- Chevrolet Astro
- Chevrolet Beauville
- Chevrolet Corvair 95 Greenbriar
- Chevrolet Express
- Chevrolet G10/G20/G30
- Chevrolet Lumina APV
- Chevrolet Nomad
- 鈴木Carry
- Chevrolet Uplander
- Chevrolet Venture
克萊斯勒集團
- Chrysler Town & Country
- Chrysler Voyager
雪铁龙
- Citroën H Van
- Citroën 2CV
- Citroën Berlingo
- Citroën C15
- Citroën Jumpy
- Citroën Jumper/Citroën Relay
Commer
大發工業
道奇汽车
- Dodge A100
Dodge B Series B100, B150, B200, B250, B350
- Dodge Caravan/Grand Caravan
- Dodge Coachman
Dodge MB Series MB-250, MB-350
- Dodge Ram Van
- Dodge Ram Wagon
- Dodge Sportsman
- 梅赛德斯-奔驰斯宾特
- Dodge Tradesman
菲亚特汽车
- Fiat Doblò
- Fiat Ducato
- Fiat Fiorino
- Fiat Scudo
福特
- 福特T型車
- Ford Aerostar
- Ford Econoline
Ford E100 (Falcon) 1961-1967
- Ford Freestar
- Ford Club Wagon
- 福特全顺
- Ford Transit Connect
- Ford Windstar
Freight Rover
- Freight Rover Sherpa
- Freight Rover 200 Series
- Freight Rover 300 Series
FSC
Żuk A 03, A 05, A 14, A 09, A 11, A 15, A 07, A 18, R, M, A 151 C, A 16 B
- Lublin van
FSO
Nysa N57, N58, N59, N60, N61, N63, 501, 503, 521/522
高尔基汽车厂
GMC (汽車)
- GMC Gaucho
- GMC Gypsy
GMC Rally STX, Wagon
- GMC Safari
- GMC Savana
GMC Vandura 1500, 2500, 3500
Honda
- Honda Acty
- Honda Elysion
- Honda Life
- Honda Mobilio
- 本田Mobilio Spike
- 本田奧德賽
- 本田Stepwgn
- Honda Vamos
現代集團
- Hyundai Entourage
- 三菱得利卡
- Hyundai H-1
- Hyundai Starex
五十鈴
- Isuzu Oasis
- Isuzu Como
- 日產君爵
歐霸 (汽車公司)
Kia
- Kia Bongo
- Kia Carnival/Sedona
- Kia Carstar MPV/Kia Joice
- Kia Towner
- Kia Pregio
LDV
- LDV Pilot
- LDV Convoy
- LDV Cub
- LDV Maxus
馬自達
- Autozam Scrum
- 馬自達Bongo
- 馬自達8
|
梅赛德斯-奔驰
- Mercedes-Benz Vaneo
- 梅赛德斯-奔驰Vario
- Mercedes-Benz Vito
- 梅赛德斯-奔驰斯宾特
- 奔驰V级
Mercury
三菱集团
- Mitsubishi Minica
- Mitsubishi Town Box
- 三菱得利卡
莫里斯
日產汽車
- Nissan Caravan
- Nissan Interstar
- Nissan Kubistar
- Nissan Primastar
- 日產貴士
- 日產S-Cargo
- Nissan Silkroad
- Nissan Vanette
奧茲摩比
欧宝/佛賀汽車
- Opel Combo
- Opel Corsavan
- Opel Astravan
- Opel Movano
- 雷諾Trafic
標緻汽車
- Peugeot Boxer
- Peugeot Expert
- Peugeot Partner
Plymouth
龐蒂克
- Pontiac Montana
- Pontiac Trans Sport
雷诺
- Renault 4
- Renault Kangoo
- Renault Master
- 雷諾Trafic
Rīgas Autobusu Fabrika
- RAF-251
- RAF-08
- RAF-10
- RAF-2203
- RAF-22031
- RAF-3311
- RAF-33111
- RAF-977
土星
西亚特
双龙汽车
速霸陸
- 速霸陸360
- 速霸陸Sambar
- 速霸陸Domingo
鈴木
- 鈴木Carry
- 鈴木Every
- 百福Rascal
- 霍頓Scurry
- 馬魯蒂Versa
丰田汽车
- 豐田Dyna
- Toyota Granvia
- 豐田Hiace
- Toyota Hiace Regius
- Toyota Regius Ace
- Toyota Liteace
- Toyota Noah/Voxy
- Toyota Master Ace Surf Wagon / Van
- Toyota Previa
- Toyota Probox
- Toyota Quick Delivery / Urban Supporter
- Toyota Sienna
- Toyota Succeed
- Toyota TownAce
佛賀汽車 和 貝德福德
- Bedford Beagle
- Bedford CA
- Bedford CF
- Bedford Chevanne
Vauxhall Combo see opel
- Vauxhall Corsavan
- Vauxhall Astravan
- Vauxhall Rascal
- 雷諾Trafic
- Vauxhall Movano
大众集團
- Volkswagen Caddy
- (T4) Transporter / Kombi / Caravelle / Eurovan / Mutlivan
- (T5) Transporter / Eurovan / Kombi / Caravelle / Mutlivan
- Volkswagen California
- Volkswagen LT
- Volkswagen Crafter
- 大众2型
|
|
|
外部連結
 | 维基共享资源中相关的多媒体资源:廂型車
|
- CADDY Forum(台灣CADDY家族論壇)
- Dual-Drive Sprinter - Mercedes Van equipped with hybrid drive systems
- Electric 35-50 q
- Micro-Vett Hybrid Daily
- Wheelchair Van Information
- Graf Carello Transporter
- Aixam Mega
- Alke' ATX
- Tasso Domino
ww8xZnZuvpk9 HZgYYO1Gprw
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...