伽藍

Multi tool use佛教 |
---|
 |
基本教義 四圣谛 八正道 十二因缘 五蘊 緣起 业 五戒 禪那 波罗密 涅槃 三法印 空性 真如
|
修行位階 佛 菩萨 辟支佛 阿罗汉 阿那含 斯陀含 須陀洹
|
人物 释迦牟尼 十大弟子 迦多衍尼子 馬鳴 龍樹 提婆 无著 世亲 鸠摩罗什 慧遠 菩提达摩 智顗 玄奘 惠能 蓮花生 宗喀巴
|
|
經籍舉要
阿含經(南传尼柯耶) 法句經 大般若经 心經 金剛經 法華經 華嚴經 維摩經 涅槃經 楞伽經 大悲咒 楞嚴經 圆觉经 藥師經 地藏經 阿彌陀經 大智度論 俱舍論 坛经
|
|
|
佛教主題
|

本條目介紹的是佛教寺院的異名。關於本條目的其他意義,請見伽藍 (消歧義)。
伽藍或僧伽藍(梵語:सँघाराम,samghārāma),音譯全名僧伽藍摩。「僧伽」(samgha)指僧團;「阿蘭摩」(ārāma)義為「園」,原意是指僧眾共住的園林,即佛教寺院。
字音字義
「伽藍」的传承音「.mw-parser-output ruby.zytext-align:justify;text-justify:none.mw-parser-output ruby.zy>rpuser-select:none.mw-parser-output ruby.zy>rtfont-feature-settings:"ruby"1;padding:0 0.1em;user-select:none茄(qié)蓝(lán)」,「घा」(ghā)之聲母為牙音,音譯之「伽」當為牙音,唯後顎化為「ㆢ(jj)」,平聲全浊归次清「ㄑ」(q)。不过,也有人撇开音韻學传承规律,讀如全清「加(jiā)蓝(lán)」,这样读虽然在北方话的听感上更接近原音,但却因失去阳平而无法通过音韵学推断原音,更会使吴赣方言区人士错将其认作ka。不过近代概念如伽利略虽同理却统读拟音不读传承音。
概論
参见:佛寺
原始佛教時期,佛寺只有梵語vihāra一詞,即漢譯精舍,義爲住處;如竹林精舍。由于当时精舍大都建在城郊幽静樹林,故又称「阿蘭若(rě)」(意爲静处)或「伽蓝」(意指僧众所居园林)。一般以一所寺院的完成必须具备七种建筑物,特称为七堂伽蓝。[1]
又以伽藍處常有八部護法神或菩薩等眾守護,也以伽藍代指護法菩薩,稱爲伽藍菩薩。
文化
被誉为“文学版《清明上河图》”的北魏传世之作《洛阳伽蓝记》中描述伽蓝是“花果蔚茂,芳草蔓合”之地。
根據唐朝貞觀年間由西域返唐朝的玄奘法師所注《大唐西域記》記載:“諸僧伽藍莊嚴佛像,瑩以珍寶,飾之錦綺,載諸輦輿,謂之行像,動以千數,雲集會所。”
參考資料
- 臺灣.中華民國教育部國語辭典
- 許鴻傳《臺灣民間伽藍尊王信仰研究》
註釋
FQxCCl I,9 lv6pQXkDghbnEL9HwKICnQmlwo9cvcKy LJb,fx7a,7YToFHjJc8ja igXzhfn P95nJ
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...