spark streaming with kafka one consumer is reading the data










0















I am using the spark steaming using the kafka i have a topic with 20 partitions. When streaming job runs only one consumer is reading the data from all the topics which leads to slow in reading the data. Is there a way can we configure one consumer per partion in spark steaming.



JavaStreamingContext jsc = AnalyticsContext.getInstance().getSparkStreamContext();
Map<String, Object> kafkaParams = MessageSessionFactory.getConsumerConfigParamsMap(MessageSessionFactory.DEFAULT_CLUSTER_IDENTITY, consumerGroup);

String topics = topic.split(",");
Collection<String> topicCollection = Arrays.asList(topics);
metricStream = KafkaUtils.createDirectStream(
jsc,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topicCollection, kafkaParams)
);
}



TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
metric_data_spark 16 3379403197 3379436869 33672 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 7 3399030625 3399065857 35232 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 13 3389008901 3389044210 35309 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 17 3380638947 3380639928 981 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 1 3593201424 3593236844 35420 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 8 3394218406 3394252084 33678 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 19 3376897309 3376917998 20689 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 3 3447204634 3447240071 35437 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 18 3375082623 3375083663 1040 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 2 3433294129 3433327970 33841 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 9 3396324976 3396345705 20729 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 0 3582591157 3582624892 33735 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 14 3381779702 3381813477 33775 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 4 3412492002 3412525779 33777 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 11 3393158700 3393179419 20719 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 10 3392216079 3392235071 18992 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 15 3383001380 3383036803 35423 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 6 3398338540 3398372367 33827 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 12 3387738477 3387772279 33802 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
metric_data_spark 5 3408698217 3408733614 35397 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2


What changes we need to do make one consumer/per partition to read the data.










share|improve this question




























    0















    I am using the spark steaming using the kafka i have a topic with 20 partitions. When streaming job runs only one consumer is reading the data from all the topics which leads to slow in reading the data. Is there a way can we configure one consumer per partion in spark steaming.



    JavaStreamingContext jsc = AnalyticsContext.getInstance().getSparkStreamContext();
    Map<String, Object> kafkaParams = MessageSessionFactory.getConsumerConfigParamsMap(MessageSessionFactory.DEFAULT_CLUSTER_IDENTITY, consumerGroup);

    String topics = topic.split(",");
    Collection<String> topicCollection = Arrays.asList(topics);
    metricStream = KafkaUtils.createDirectStream(
    jsc,
    LocationStrategies.PreferConsistent(),
    ConsumerStrategies.Subscribe(topicCollection, kafkaParams)
    );
    }



    TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
    metric_data_spark 16 3379403197 3379436869 33672 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 7 3399030625 3399065857 35232 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 13 3389008901 3389044210 35309 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 17 3380638947 3380639928 981 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 1 3593201424 3593236844 35420 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 8 3394218406 3394252084 33678 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 19 3376897309 3376917998 20689 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 3 3447204634 3447240071 35437 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 18 3375082623 3375083663 1040 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 2 3433294129 3433327970 33841 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 9 3396324976 3396345705 20729 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 0 3582591157 3582624892 33735 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 14 3381779702 3381813477 33775 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 4 3412492002 3412525779 33777 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 11 3393158700 3393179419 20719 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 10 3392216079 3392235071 18992 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 15 3383001380 3383036803 35423 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 6 3398338540 3398372367 33827 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 12 3387738477 3387772279 33802 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
    metric_data_spark 5 3408698217 3408733614 35397 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2


    What changes we need to do make one consumer/per partition to read the data.










    share|improve this question


























      0












      0








      0








      I am using the spark steaming using the kafka i have a topic with 20 partitions. When streaming job runs only one consumer is reading the data from all the topics which leads to slow in reading the data. Is there a way can we configure one consumer per partion in spark steaming.



      JavaStreamingContext jsc = AnalyticsContext.getInstance().getSparkStreamContext();
      Map<String, Object> kafkaParams = MessageSessionFactory.getConsumerConfigParamsMap(MessageSessionFactory.DEFAULT_CLUSTER_IDENTITY, consumerGroup);

      String topics = topic.split(",");
      Collection<String> topicCollection = Arrays.asList(topics);
      metricStream = KafkaUtils.createDirectStream(
      jsc,
      LocationStrategies.PreferConsistent(),
      ConsumerStrategies.Subscribe(topicCollection, kafkaParams)
      );
      }



      TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
      metric_data_spark 16 3379403197 3379436869 33672 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 7 3399030625 3399065857 35232 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 13 3389008901 3389044210 35309 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 17 3380638947 3380639928 981 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 1 3593201424 3593236844 35420 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 8 3394218406 3394252084 33678 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 19 3376897309 3376917998 20689 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 3 3447204634 3447240071 35437 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 18 3375082623 3375083663 1040 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 2 3433294129 3433327970 33841 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 9 3396324976 3396345705 20729 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 0 3582591157 3582624892 33735 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 14 3381779702 3381813477 33775 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 4 3412492002 3412525779 33777 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 11 3393158700 3393179419 20719 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 10 3392216079 3392235071 18992 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 15 3383001380 3383036803 35423 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 6 3398338540 3398372367 33827 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 12 3387738477 3387772279 33802 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 5 3408698217 3408733614 35397 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2


      What changes we need to do make one consumer/per partition to read the data.










      share|improve this question
















      I am using the spark steaming using the kafka i have a topic with 20 partitions. When streaming job runs only one consumer is reading the data from all the topics which leads to slow in reading the data. Is there a way can we configure one consumer per partion in spark steaming.



      JavaStreamingContext jsc = AnalyticsContext.getInstance().getSparkStreamContext();
      Map<String, Object> kafkaParams = MessageSessionFactory.getConsumerConfigParamsMap(MessageSessionFactory.DEFAULT_CLUSTER_IDENTITY, consumerGroup);

      String topics = topic.split(",");
      Collection<String> topicCollection = Arrays.asList(topics);
      metricStream = KafkaUtils.createDirectStream(
      jsc,
      LocationStrategies.PreferConsistent(),
      ConsumerStrategies.Subscribe(topicCollection, kafkaParams)
      );
      }



      TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
      metric_data_spark 16 3379403197 3379436869 33672 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 7 3399030625 3399065857 35232 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 13 3389008901 3389044210 35309 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 17 3380638947 3380639928 981 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 1 3593201424 3593236844 35420 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 8 3394218406 3394252084 33678 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 19 3376897309 3376917998 20689 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 3 3447204634 3447240071 35437 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 18 3375082623 3375083663 1040 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 2 3433294129 3433327970 33841 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 9 3396324976 3396345705 20729 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 0 3582591157 3582624892 33735 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 14 3381779702 3381813477 33775 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 4 3412492002 3412525779 33777 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 11 3393158700 3393179419 20719 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 10 3392216079 3392235071 18992 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 15 3383001380 3383036803 35423 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 6 3398338540 3398372367 33827 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 12 3387738477 3387772279 33802 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2
      metric_data_spark 5 3408698217 3408733614 35397 consumer-2-da278f31-c368-414c-925b-d3ca4881709e /xx.xx.xx.xx consumer-2


      What changes we need to do make one consumer/per partition to read the data.







      java apache-spark apache-kafka spark-streaming






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 15 '18 at 15:11









      cricket_007

      81.4k1142111




      81.4k1142111










      asked Nov 14 '18 at 13:16









      Murthy ChelankuriMurthy Chelankuri

      164




      164






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Since you are using the consistent placement strategy, it should distribute over executors



          When you run a Spark submit, you need to specify that you want at most 20 executors to be started. --num-executors 20



          If you do more than that, though, you'll have idle executors not consuming Kafka data (but they might still be able to process other stages)






          share|improve this answer

























          • I tried that but did not help

            – Murthy Chelankuri
            Nov 15 '18 at 10:37











          • Hmm. Well, that's the only way I can think of... Are there just idle executors in the Spark UI when you do this?

            – cricket_007
            Nov 15 '18 at 15:12











          • Maybe this helps stackoverflow.com/a/40281211/2308683

            – cricket_007
            Nov 15 '18 at 15:33










          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53301140%2fspark-streaming-with-kafka-one-consumer-is-reading-the-data%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          Since you are using the consistent placement strategy, it should distribute over executors



          When you run a Spark submit, you need to specify that you want at most 20 executors to be started. --num-executors 20



          If you do more than that, though, you'll have idle executors not consuming Kafka data (but they might still be able to process other stages)






          share|improve this answer

























          • I tried that but did not help

            – Murthy Chelankuri
            Nov 15 '18 at 10:37











          • Hmm. Well, that's the only way I can think of... Are there just idle executors in the Spark UI when you do this?

            – cricket_007
            Nov 15 '18 at 15:12











          • Maybe this helps stackoverflow.com/a/40281211/2308683

            – cricket_007
            Nov 15 '18 at 15:33















          0














          Since you are using the consistent placement strategy, it should distribute over executors



          When you run a Spark submit, you need to specify that you want at most 20 executors to be started. --num-executors 20



          If you do more than that, though, you'll have idle executors not consuming Kafka data (but they might still be able to process other stages)






          share|improve this answer

























          • I tried that but did not help

            – Murthy Chelankuri
            Nov 15 '18 at 10:37











          • Hmm. Well, that's the only way I can think of... Are there just idle executors in the Spark UI when you do this?

            – cricket_007
            Nov 15 '18 at 15:12











          • Maybe this helps stackoverflow.com/a/40281211/2308683

            – cricket_007
            Nov 15 '18 at 15:33













          0












          0








          0







          Since you are using the consistent placement strategy, it should distribute over executors



          When you run a Spark submit, you need to specify that you want at most 20 executors to be started. --num-executors 20



          If you do more than that, though, you'll have idle executors not consuming Kafka data (but they might still be able to process other stages)






          share|improve this answer















          Since you are using the consistent placement strategy, it should distribute over executors



          When you run a Spark submit, you need to specify that you want at most 20 executors to be started. --num-executors 20



          If you do more than that, though, you'll have idle executors not consuming Kafka data (but they might still be able to process other stages)







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 15 '18 at 15:35

























          answered Nov 14 '18 at 16:22









          cricket_007cricket_007

          81.4k1142111




          81.4k1142111












          • I tried that but did not help

            – Murthy Chelankuri
            Nov 15 '18 at 10:37











          • Hmm. Well, that's the only way I can think of... Are there just idle executors in the Spark UI when you do this?

            – cricket_007
            Nov 15 '18 at 15:12











          • Maybe this helps stackoverflow.com/a/40281211/2308683

            – cricket_007
            Nov 15 '18 at 15:33

















          • I tried that but did not help

            – Murthy Chelankuri
            Nov 15 '18 at 10:37











          • Hmm. Well, that's the only way I can think of... Are there just idle executors in the Spark UI when you do this?

            – cricket_007
            Nov 15 '18 at 15:12











          • Maybe this helps stackoverflow.com/a/40281211/2308683

            – cricket_007
            Nov 15 '18 at 15:33
















          I tried that but did not help

          – Murthy Chelankuri
          Nov 15 '18 at 10:37





          I tried that but did not help

          – Murthy Chelankuri
          Nov 15 '18 at 10:37













          Hmm. Well, that's the only way I can think of... Are there just idle executors in the Spark UI when you do this?

          – cricket_007
          Nov 15 '18 at 15:12





          Hmm. Well, that's the only way I can think of... Are there just idle executors in the Spark UI when you do this?

          – cricket_007
          Nov 15 '18 at 15:12













          Maybe this helps stackoverflow.com/a/40281211/2308683

          – cricket_007
          Nov 15 '18 at 15:33





          Maybe this helps stackoverflow.com/a/40281211/2308683

          – cricket_007
          Nov 15 '18 at 15:33

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53301140%2fspark-streaming-with-kafka-one-consumer-is-reading-the-data%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Top Tejano songwriter Luis Silva dead of heart attack at 64

          政党

          天津地下鉄3号線