五氟化磷

Multi tool use五氟化磷
|
---|
 |
 |
IUPAC名 phosphorus pentafluoride
|
别名
| 氟化磷(V)
|
识别
|
---|
CAS号
| 7647-19-0  |
PubChem
| 24295
|
ChemSpider
| 22715
|
SMILES
|
|
InChI
|
|
InChIKey
| OBCUTHMOOONNBS-UHFFFAOYAH
|
UN编号
| 2198
|
EINECS
| 231-602-3
|
RTECS
| TH4070000
|
性质
|
---|
化学式
| PF5
|
摩尔质量
| 125.9685 g·mol⁻¹
|
外观
| 無色氣體
|
熔点
| −93.78 °C (179.4 K)
|
沸点
| −84.5 °C (188.7 K)
|
溶解性(水)
| 水解
|
结构
|
---|
分子构型
| 三角双锥
|
偶极矩
| 0 D
|
相关物质
|
---|
其他阴离子
| PF3 PCl5 |
相关五氟化物
| SbF5, ClF5, BrF5, IF5, TaF5, UF5 |
相关化学品
| VOF3 |
若非注明,所有数据均出自一般条件(25 ℃,100 kPa)下。
|
五氟化磷(化学式:PF5),是磷鹵化合物,磷原子的氧化數為+5,包含有一个三中心四电子键。[1]
五氟化磷在常溫常壓下為無色惡臭氣體,其對皮膚、眼睛、粘膜有強烈刺激性。是活性極大的化合物,在潮濕空氣中會劇烈產生有毒和腐蝕性的氟化氫白色煙霧。五氟化磷被用作聚合反應的催化劑。
結構
五氟化磷分子为三角双锥构型,单晶X射线衍射研究顯示PF5分子有兩種不同的P−F鍵(垂直與水平):P−Fax = 158.0 pm 與 P−Feq = 152.2 pm。氣相電子衍射分析也得到相似的值:P−Fax = 158 pm 與P−Feq = 153 pm。
有趣的是,即使在−100°C 的低温下,19F核磁共振譜也无法分辨轴向的氟原子与水平面的氟原子,只有一个简单的氟共振峰;这表明在毫秒单位级时,五氟化磷的五个氟原子是等同的,轴向与水平方向的氟原子发生着极快的交换作用。電子衍射和单晶X射线衍射沒有發現這種影響,是因为他們的時間單位比核磁共振譜學更短,从而得以分辨出两种不同的氟原子。
这个现象首先由 Gutowsky[2] 注意到,目前一般通过Berry假旋转作用来解释,即认为两个三角双锥结构通过变为一个四方锥构型的中间体,在不停地发生着转换。
参见
- 其他磷的卤化物:五氯化磷、五溴化磷、五碘化磷;三氟化磷
- 氟磷酸
参考资料
^ Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements, 2nd Edition, Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
^ Gutowsky, H. S.; McCall, D. W.; Slichter, C. P. "Nuclear Magnetic Resonance Multiplets in Liquids" Journal of Chemical Physics 1953, volume 21, 279.
IbB3,569WU,c,QDFbzK 67gxtbeQTkGPfshaf
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...