五氟化砷

Multi tool use五氟化砷
|
---|
|
IUPAC名 五氟化砷
|
识别
|
---|
CAS号
| 7784-36-3  |
PubChem
| 82223
|
ChemSpider
| 74203
|
SMILES
|
|
InChI
|
|
InChIKey
| YBGKQGSCGDNZIB-UHFFFAOYAA
|
性质
|
---|
化学式
| AsF5
|
摩尔质量
| 169.9136 g·mol⁻¹
|
外观
| 无色气体
|
密度
| 2.138 g cm-3[1] |
熔点
| -79.8 ˚C[1] |
沸点
| -52.8 ˚C[1] |
溶解性(水)
| 可溶
|
溶解性([[乙醚]])
| 可溶
|
溶解性([[苯]])
| 可溶
|
危险性
|
---|
欧盟危险性符号
 有毒 T 危害环境 N
|
警示术语
| R:R23/25, R50/53
|
安全术语
| S:S1/2, S20/21, S28, S45, S60, S61
|
NFPA 704
|
|
相关物质
|
---|
相关VA族氟化物
| 五氟化磷 五氟化锑 五氟化铋
|
相关化学品
| 五氯化砷 三氟化砷 五氧化二砷
|
若非注明,所有数据均出自一般条件(25 ℃,100 kPa)下。
|
五氟化砷是砷元素和氟元素形成的一种无机化合物。其中砷元素的氧化态是+5。
制备
五氟化砷可以由砷与氟的直接化合来制备:[2]
- 2As + 5F2 → 2AsF5
它也可以通过三氟化砷与氟反应获得:
- AsF3 + F2 → AsF5
性质
五氟化砷是一种无色气体,空间构型为三角双锥。[2] 固态时轴向的As-F键键长为171.9 pm,而水平方向的为166.8 pm。[2]
反应
五氟化砷可以形成其他卤化物,它也是一个很强的氟离子受体。这可以通过它与四氟化硫反应形成离子化合物而表现出来:[3]
- AsF5 + SF4 → SF3+ + AsF6−
因此,一些具有强氧化性的阳离子,比如Cl+
3、ClO+
2、SeF+
3、O+
2、N2F+
3、XeF+等都能形成较稳定的六氟砷酸盐。
五氟化砷在这类反应有时还是氧化剂,比如液态二氧化硫中锑与五氟化砷反应得到多锑阳离子的六氟砷酸盐,自身则被还原成三氟化砷;在无水氟化氢中,五氟化砷可与硫单质反应得到多硫阳离子的盐S2+
8(AsF−
6)2和S+
8AsF−
6。[4]
参见
参考资料
^ 1.01.11.2 Record of Arsenic(V) fluoride in the GESTIS Substance Database from the IFA, accessed on 24/12/2007
^ 2.02.12.2 Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements 2nd. Oxford:Butterworth-Heinemann. 1997. ISBN 0-7506-3365-4.
^ An investigation of the structures of the adducts of SF4 with BF3, PF5, AsF5, and SbF5 in the solid state and in solution in HF, M. Azeem, M. Brownstein, and R. J. Gillespie Can. J. Chem. 47(22): 4159–4167 (1969), doi:10.1139/v69-689
^ 张青莲. 《无机化学丛书》第四卷:氮、磷、砷分族. 北京: 科学出版社. : P397–398. ISBN 7-03-002238-6.
砷化合物
|
---|
| AsBr3 · AsCl3 · AsCl5 · AsF3 · AsF5 · AsH3 · AsI3 · As2O3 · As2O5 · As2S3 · As2S5 · As2Se3 · As4S4
|
|
52 zMfK HumDXbNUM XCPGKv mowvq
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...