華盛頓縣 (猶他州)

Multi tool use
本文介紹的是美國猶他州的一個縣。關於同名的縣,請見「
華盛頓縣」。
body.skin-minerva .mw-parser-output table.infobox captiontext-align:center
猶他州華盛頓縣 |
---|
地圖 |
---|
 華盛頓縣於猶他州內的地理位置 |
 美國猶他州的地理位置 |
統計資料 |
---|
县名取自 | George Washington
|
---|
最大城市 | Saint George |
---|
面積 - 全部 |
6,293 km²(2,430 mi²) |
---|
- 陸地 | 6,285 km²(2,427 mi²) |
---|
- 水域 | 8 km²(3 mi²),99.87 |
---|
人口 - 2000年
|
90,354人 |
---|
- 密度
| 14.4人/km²(37.2人/mi²) |
---|
網站 | www.washco.state.ut.us
|
---|
華盛頓縣(Washington County, Utah)是美國猶他州西南角的一個縣,南鄰亞利桑那州,西鄰內華達州。面積6,293平方公里。根據美國2000年人口普查,共有人口90,354。縣治聖喬治。
成立於1852年,縣名紀念首任總統喬治·華盛頓。
犹他州
|
---|
| 首府:盐湖城
| | 主題 | | |
---|
| 地區 | - 卡希谷
- 科羅拉多高原
- 大盆地
- 大鹽湖
- 大鹽湖沙漠
- 莫哈韋沙漠
- 紀念碑谷
- 聖拉斐爾高地
- 尤因塔盆地
- 尤因塔山脈
|
---|
| 县 | - 比弗
- 博克斯埃尔德
- 卡什
- 卡本
- 达盖特
- 戴维斯
- 杜申
- 埃默里
- 加菲尔德
- 格兰德
- 艾恩
- 贾布
- 凯恩
- 米勒德
- 摩根
- 派尤特
- 里奇
- 盐湖
- 圣胡安
- 桑皮特
- 塞维尔
- 萨米特
- 图埃勒
- 尤因塔
- 犹他
- 沃萨奇
- 华盛顿
- 韦恩
- 韦伯
|
---|
| 主要城市 | - 亚美利加福克
- 邦蒂富尔
- 克利尔菲尔德
- 卡顿伍德海兹
- 德雷珀
- 莱顿
- 利哈伊
- 洛根
- 米德韦尔
- 默里
- 普莱森特格罗夫
- 奥格登
- 奥勒姆
- 普罗沃
- 里弗顿
- 罗伊
- 西班牙福克
- 盐湖城
- 圣乔治
- 桑迪
- 南乔丹
- 泰勒斯维尔
- 图埃勒
- 西乔丹
- 西瓦利城
|
---|
| 景点 | - 拱门国家公园
- 巴纳维亚盐带平地
- 布萊斯峽谷國家公園
- 峽谷地國家公園
- 圆顶礁国家公园
- 大盐湖
- 澙湖遊樂園
- 圣丹斯电影节
- 圣殿广场
- 犹他莎士比亚节
- 錫安國家公園
|
---|
|
VU9r 2CRm DFBwk7eYakCP462spy98VA COe,VO73ANqCAyaIX,TOQM,jEs5J3nvFr9ehJby 5C7v0QPY bxkJviuu4ByEa059g8
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...