戰神 (遊戲)

Multi tool use
本文介紹的是2005年发行的游戏。關於2018年发行的同名游戏,請見「
戰神 (2018年遊戲)」。
body.skin-minerva .mw-parser-output table.infobox captiontext-align:center
戰神 |
---|
|
 戰神美版封面
|
类型 | 動作
|
---|
平台 | PlayStation 2 PlayStation 3(重制版) PlayStation Vita
|
---|
开发商 | 索尼電腦娛樂聖塔莫尼卡工作室
|
---|
发行商 | 索尼電腦娛樂
|
---|
总监 | 大衛·賈菲[*]
|
---|
设计师 | David Jaffe
|
---|
编剧 | Marianne Krawczyk
|
---|
音乐 | 杰拉德·马里诺[*]
|
---|
系列 | 戰神系列
|
---|
引擎 | Kinetica
|
---|
模式 | 單人
|
---|
发行日 |
- 北美:2005年3月22日
- 欧洲:2005年6月21日
|
---|
《戰神》(英语:God of War)是由索尼電腦娛樂發行的動作遊戲,由索尼電腦娛樂旗下公司聖塔莫尼卡工作室開發。遊戲是根據希臘神話改编。2007年,新力電腦娛樂於2009年11月17日推出重製《戰神》與《戰神II》的合輯版,並針對PS3硬體加以強化移植,解析度提升為720p,也支援PS3獎盃系統。
劇情概述
遊戲主角克雷多斯原本是一名斯巴達將軍。克雷多斯在一次與野蠻人巴比倫王展開戰爭之時不敵,在接近被殺而命懸一線時,克雷多斯以自身靈魂作為代價,成功呼召了初代戰神阿瑞斯降臨人世,阿瑞斯賜予克雷多斯由冥府火焰所打造而成的混沌劍,得到混沌劍的克雷多斯輕易擊殺巴比倫王。自此克雷多斯成為阿瑞斯在人間的忠實奴僕及追隨者同時也是人間的一名完美戰士,在之後的戰爭中戰無不勝。
好景不常,阿瑞斯為了讓克雷多斯放棄人間的所有牽掛,精心安排地設局令克雷多斯殺了自己的妻女。自此克雷多斯受到詛咒,他妻女的骨灰嵌入了克雷多斯的身體並每晚受到惡夢的折磨,自此克雷多斯化身為斯巴達的鬼魂並展開了他向阿瑞斯的復仇之旅。
參考資料
外部連結
戰神系列
|
---|
| 遊戲 | 戰神(2005)
- 戰神II
- 背叛
- 奧林帕斯之鏈
- 戰神III
- 斯巴達的亡魂
- 崛起
战神(2018)
|
---|
| 開發商 | - 聖塔莫尼卡工作室
- Ready at Dawn
- Javaground
- Bluepoint Games
|
---|
| 相關條目 | - 大众高尔夫5
- 小小大星球
- 劍魂:破碎的命運
- ModNation Racers
真人快打 (2011)
- PlayStation全明星大乱斗
|
---|
|
roZxqPXSFpaE7r9tb
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...