Ready at Dawn

Multi tool usebody.skin-minerva .mw-parser-output table.infobox captiontext-align:center
Ready at Dawn |
---|
 2014年起使用的标志
|
公司類型 | 私人公司
|
---|
成立 | 2003年 |
---|
創辦人 | Ru Weerasuriya Andrea Pessino Didier Malenfant |
---|
代表人物 | Paul Sams (CEO) Ru Weerasuriya (CCO) Andrea Pessino (CTO) |
---|
總部 | 美国加利福尼亚州爾灣
|
---|
产业 | 电子游戏
|
---|
產品 | 电子游戏 |
---|
母公司 | 独立
|
---|
网站 | www.readyatdawn.com
|
---|
Ready at Dawn Studios是一家美国的电子游戏开发商,成立于2003年,公司早期成员来自顽皮狗和暴雪娱乐。[1][2]公司因开发了PlayStation Portable平台上的《战神:奥林匹斯之链》、《戰神:斯巴達的亡魂》以及PlayStation 4上的《教团1886》而为人熟知。虽然Ready at Dawn开发的游戏作品多是索尼互动娱乐旗下的游戏系列,但公司并非是其子公司,而是独立运营。
公司作品
年份 | 名称 | 类型 | 游戏平台 | 发行商 | 备注
|
---|
2006 | 达斯特 | 平台 | PlayStation Portable | 索尼电脑娱乐 | 由顽皮狗参与制作
|
2008 | 战神:奥林匹斯之链 | 砍殺、动作冒险
| PlayStation Portable | 索尼电脑娱乐 |
|
2008 | 大神 | 动作 | Wii | 卡普空 | 移植自PlayStation 2的同名作品
|
2010 | 戰神:斯巴達的亡魂 | 砍殺、动作冒险 | PlayStation Portable | 索尼电脑娱乐 |
|
2011 | 战神 起源合集 | 砍殺、动作冒险 | PlayStation 3 | 索尼电脑娱乐 | 《奥林匹斯之链》和《斯巴达之魂》的高清合集
|
2015 | 教團:1886 | 动作冒险 | PlayStation 4 | 索尼电脑娱乐 | 与索尼电脑娱乐圣塔莫尼卡工作室联合开发
|
2017 | 百变球球 | 清版动作 | PlayStation 4、Xbox One、Windows
| Ready at Dawn、 GameTrust、腾讯[3] |
|
2017 | Lone Echo | 冒险 | Oculus Rift[4] | Ready at Dawn、Oculus
|
|
参考资料
^ E3 2014: Game developer Ready at Dawn rolls the dice with ‘The Order: 1886′.LATimes.2014-06-10.[2017-04-21].
^ Naughty Dog director lured to Ready At Dawn by new IP.Engadget.2007-08-03.[2017-04-21].
^ 《教团1886》开发商新作国服版确定由腾讯代理.游戏时光.2017-04-20.[2017-04-21].
^ Lone Echo recreates Gravity, but makes your robot body the star.Polygon.2016-10-06.[2017-04-21].
外部链接
YyrorzDSfboQ4Uw7 PxA,BUz6aO52TOqX 2UZWOehzd 4i,9LAYjybENT,dO,YDkn1 kNwsPJodB
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...