Pseudomonas putida
Pseudomonas putida
Jump to navigation
Jump to search
Pseudomonas putida | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Pseudomonadales |
Family: | Pseudomonadaceae |
Genus: | Pseudomonas |
Species: | P. putida |
Binomial name | |
Pseudomonas putida Trevisan, 1889 | |
Type strain | |
ATCC 12633 CCUG 12690 | |
Synonyms | |
Bacillus fluorescens putidus" Flügge 1886 |
Pseudomonas putida is a Gram-negative, rod-shaped, saprotrophic soil bacterium. Based on 16S rRNA analysis, P. putida was taxonomically confirmed to be a Pseudomonas species (sensu stricto) and placed, along with several other species, in the P. putida group, to which it lends its name.[1]
A variety of P. putida, called multiplasmid hydrocarbon-degrading Pseudomonas, is the first patented organism in the world. Because it is a living organism, the patent was disputed and brought before the United States Supreme Court in the historic court case Diamond v. Chakrabarty, which the inventor, Ananda Mohan Chakrabarty, won. It demonstrates a very diverse metabolism, including the ability to degrade organic solvents such as toluene.[2] This ability has been put to use in bioremediation, or the use of microorganisms to degrade environmental pollutants. Use of P. putida is preferable to some other Pseudomonas species capable of such degradation, as it is a safe species of bacteria, unlike P. aeruginosa, for example, which is an opportunistic human pathogen.
Contents
1 Uses
1.1 Bioremediation
1.2 Biocontrol
1.3 Oligonucleotide usage signatures of the P. putida KT2440 genome
1.4 Organic synthesis
1.5 CBB5 and caffeine consumption
2 References
3 External links
Uses[edit]
Bioremediation[edit]
The diverse metabolism of wild-type strains of P. putida may be exploited for bioremediation; for example, it has been shown in the laboratory to function as a soil inoculant to remedy naphthalene-contaminated soils.[3]
P. putida is capable of converting styrene oil into the biodegradable plastic PHA.[4][5] This may be of use in the effective recycling of polystyrene foam, otherwise thought to be not biodegradable.
Biocontrol[edit]
P. putida has demonstrated potential biocontrol properties, as an effective antagonist of damping off diseases such as Pythium[6] and Fusarium.[7]
Oligonucleotide usage signatures of the P. putida KT2440 genome[edit]
Di- to pentanucleotide usage and the list of the most abundant octa- to tetradecanucleotides are useful measures of the bacterial genomic signature. The P. putida KT2440 chromosome is characterized by strand symmetry and intrastrand parity of complementary oligonucleotides. Each tetranucleotide occurs with similar frequency on the two strands. Tetranucleotide usage is biased by G+C content and physicochemical constraints such as base stacking energy, dinucleotide propeller twist angle, or trinucleotide bendability. The 105 regions with atypical oligonucleotide composition can be differentiated by their patterns of oligonucleotide usage into categories of horizontally acquired gene islands, multidomain genes or ancient regions such as genes for ribosomal proteins and RNAs. A species-specific extragenic palindromic sequence is the most common repeat in the genome that can be exploited for the typing of P. putida strains. In the coding sequence of P. putida, LLL is the most abundant tripeptide.[8]
Organic synthesis[edit]
P. putida's amenability to genetic manipulation has allowed it to be used in the synthesis of numerous organic pharmaceutical and agricultural compounds from various substrates.[9]
CBB5 and caffeine consumption[edit]
P. putida CBB5, a nonengineered, wild-type variety found in soil, can live on pure caffeine and has been observed to break caffeine down into carbon dioxide and ammonia.[10][11]
References[edit]
^ Anzai; Kim, H; Park, JY; Wakabayashi, H; Oyaizu, H; et al. (Jul 2000). "Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence". Int J Syst Evol Microbiol. 50 (4): 1563–89. doi:10.1099/00207713-50-4-1563. PMID 10939664..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
^ Marqués, Silvia; Ramos, Juan L. (1993). "Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways". Molecular Microbiology. 9 (5): 923–9. doi:10.1111/j.1365-2958.1993.tb01222.x. PMID 7934920.
^ Gomes, NC; Kosheleva, IA; Abraham, WR; Smalla, K (2005). "Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community". FEMS Microbiology Ecology. 54 (1): 21–33. doi:10.1016/j.femsec.2005.02.005. PMID 16329969.
^ Immortal Polystyrene Foam Meets its Enemy | LiveScience
^ Ward, PG; Goff, M; Donner, M; Kaminsky, W; O'Connor, KE (2006). "A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic". Environmental Science & Technology. 40 (7): 2433–7. doi:10.1021/es0517668. PMID 16649270.
^ Amer, GA; Utkhede, RS (2000). "Development of formulations of biological agents for management of root rot of lettuce and cucumber". Canadian Journal of Microbiology. 46 (9): 809–16. doi:10.1139/w00-063. PMID 11006841.
^ Validov, S; Kamilova, F; Qi, S; Stephan, D; Wang, JJ; Makarova, N; Lugtenberg, B (2007). "Selection of bacteria able to control Fusarium oxysporum f. Sp. Radicis-lycopersici in stonewool substrate". Journal of Applied Microbiology. 102 (2): 461–71. doi:10.1111/j.1365-2672.2006.03083.x. PMID 17241352.
^ Cornelis P (editor). (2008). Pseudomonas: Genomics and Molecular Biology (1st ed.). Caister Academic Press. ISBN 1-904455-19-0.
^ https://www.researchgate.net/publication/221847539_Industrial_biotechnology_of_Pseudomonas_putida_and_related_species
^ http://blogs.scientificamerican.com/observations/2011/05/24/newly-discovered-bacteria-lives-on-caffeine
^ Summers, RM; Louie, TM; Yu, CL; Subramanian, M (2011). "Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source". Microbiology. 157 (Pt 2): 583–92. doi:10.1099/mic.0.043612-0. PMID 20966097.
External links[edit]
- Risk Assessment Summary, CEPA 1999. Pseudomonas putida CR30RNSLL(pADPTel).
- Pseudomonas putida is an example for plant growth promoting Rhizobacterium, which produces iron chelating substances.
- Type strain of Pseudomonas putida at BacDive - the Bacterial Diversity Metadatabase
Categories:
- Pseudomonadales
- Oil spill remediation technologies
- Bacteria described in 1889
(window.RLQ=window.RLQ||).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.476","walltime":"0.578","ppvisitednodes":"value":4145,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":37195,"limit":2097152,"templateargumentsize":"value":8826,"limit":2097152,"expansiondepth":"value":24,"limit":40,"expensivefunctioncount":"value":10,"limit":500,"unstrip-depth":"value":1,"limit":20,"unstrip-size":"value":27508,"limit":5000000,"entityaccesscount":"value":11,"limit":400,"timingprofile":["100.00% 529.904 1 -total"," 40.69% 215.626 1 Template:Taxobox"," 39.75% 210.626 1 Template:Reflist"," 37.73% 199.940 1 Template:Taxobox/core"," 33.70% 178.577 7 Template:Cite_journal"," 20.50% 108.621 18 Template:Taxobox_colour"," 18.08% 95.813 18 Template:Delink"," 18.02% 95.478 1 Template:Taxonbar"," 12.41% 65.747 7 Template:Taxonomy"," 9.08% 48.092 1 Template:If_empty"],"scribunto":"limitreport-timeusage":"value":"0.281","limit":"10.000","limitreport-memusage":"value":4297920,"limit":52428800,"cachereport":"origin":"mw1319","timestamp":"20190309145540","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":98,"wgHostname":"mw1248"););