劳斯郡

Multi tool usebody.skin-minerva .mw-parser-output table.infobox captiontext-align:center
勞斯郡 Contae Lú
|
---|
|
格言:Lugh sáimh-ioldánach (Irish) "Lugh equally skilled in many arts" |
 |
坐标:53°50′00″N 6°30′00″W / 53.833333333333°N 6.5°W / 53.833333333333; -6.5
|
國家 | 愛爾蘭
|
---|
省份 | 倫斯特
|
---|
下議院 | 勞斯
|
---|
歐盟議會 | 東
|
---|
郡治 | 鄧多克
|
---|
政府
|
---|
• 类型 | 郡議會
|
---|
面积
|
---|
• 总计
| 826 平方公里(319 平方英里) |
---|
面积排名 | 32nd
|
---|
人口(2011)
|
---|
• 總計 | 122,897 |
---|
• 排名 | 18th [1] |
---|
車牌 | LH |
---|
網站 | www.louthcoco.ie
|
---|
勞斯郡 (County Louth;愛爾蘭語:Contae Lú),俗稱The Wee County,是愛爾蘭的一個郡,位於愛爾蘭島東岸,北鄰北愛爾蘭。歷史上屬倫斯特省。面積820平方公里。2006年人口110,894人。
首府鄧多克。
參考文獻
^ 引用错误:没有为名为census
的参考文献提供内容
外部連結
 | 维基共享资源中相关的多媒体资源:劳斯郡
|
- Carlingford town local site
- Drogheda Tourism - Official Site of the Drogheda Tourist Office
- Dunleer town portal
- Dunleer Parish
- Louth Local Authorities
- Omeath town local site
- Tallanstown Tidy Towns
- CSO Louth
- http://www.weecountynews.com/
坐标:53°50′N 6°30′W / 53.833°N 6.500°W / 53.833; -6.500
愛爾蘭共和國行政區劃
|
---|
| 首都: 都柏林 | | 城市 | | |
---|
| 省份 |
倫斯特 | 都柏林郡 1(芬戈 · 南都柏林 · 鄧萊里-拉斯當) · 威克洛 · 韋克斯福德 · 卡洛 · 基爾代爾 · 米斯 · 勞斯 · 朗福德 · 韋斯特米斯 · 奧法利 · 萊伊什 · 基爾肯尼
|
---|
| 芒斯特 | 科克 · 凱里 · 利默里克 · 蒂珀雷里 · 克萊爾 · 沃特福德
|
---|
| 康諾特 | 梅奧 · 羅斯康芒 · 斯萊戈 · 利特里姆 · 戈爾韋
|
---|
| 阿爾斯特 | 莫納亨 · 卡文 · 多尼戈爾 · 安特里姆† · 阿馬† · 唐† · 弗馬納† · 倫敦德里† · 蒂龍†
|
---|
|
---|
| 注释 | [1]1994年,都柏林郡,向下劃分出都柏林市、芬戈郡、南都柏林郡及鄧萊里-拉斯當郡。
†屬北爱尔兰
|
---|
| 行政区划 - 各国行政区划列表 - 世界政區索引
|
|
eQGg8M3r6pkEJyrjR9Lsxuki HrR4HK uu6aNK9dW177LVq4IS3
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...