权威

Multi tool use权威(英语:Authority),可以最简单地定义为“正当的权力”[1]。权力是影响他人行为的能力,而权威则是发挥此影响的权利。
人类社会中某种不容置疑的,强制性力量,要求人们无条件的遵从。这是人类社会自身的需要,她在很多方面构成了权力的基础。权威可以是神、也可以是人,也可以是抽象的法律或者对人类共同生活的某种理解。[2]
对权威的接受,不是通过武力等暴力威胁进行强制,而是通过教育、传承、劝导等方式使处于同一个共同体中的人自愿的接受。[3]
理论观点
马克斯·韦伯
作为公共行政学最主要的创始人之一,马克斯·韦伯认为,任何组织的形成、管治、支配均建构于某种特定的权威之上。适当的权威能够消除混乱、带来秩序;而没有权威的组织将无法实现其组织目标。他提出了三种正式的政治支配和权威的形式,分别为传统权威、魅力权威、以及理性法定权威。
传统权威(英语:traditional authority):这是一种很大程度上依赖于传统或习俗的权利领导形式,领导者有一个传统的和合法的权利行使权力。更重要的是,传统权威是封建、世袭制度的基础,如部落和君主制。这种权力不利于社会变革,往往是非理性的和不一致的。
魅力权威(英语:charismatic authority):当一个领导者的使命和愿景能够激励他人,从而形成其权力基础,产生魅力权威。对魅力领袖的忠实服从以及其合法性往往都是基于信念。他们或会被灌输神或超自然的力量,如宗教先知、戰爭英雄或革命領袖。
理性法定权威(英语:rational-legal authority):这是以理性和法律规定为基础行使权威。服从并不是因为信仰或崇拜,而是因为规则给予领导者的权力。因此,理性法定权力的运用能够形成一个客观、具体和组织结构,并且是科层制(官僚制)的基础。
参看
社会学主题
政治主题
参考书目
Weber, M. The Theory Of Social And Economic Organization. New York: Free Press. 1997. ISBN 978-0684836409.
Shepard, J. M. Sociology (9th edition). Belmont, CA: Wadsworth Publishing. 2006. ISBN 978-0495096344.
参考文献
^ Andrew Heywood. Politics: Second Edition. New York: Palgrave Macmillan. 2002. ISBN 978-0333971314.
^ 朱家安. 訴諸權威、以人廢言、XXX不意外. 鳴人堂. [2017-03-03] (中文(台灣)).
^ 劉揚銘. 世代差異小測驗:面對權威,你採取哪一種態度呢?. 鳴人堂. [2017-03-03] (中文(台灣)).
社会心理学
|
---|
| 人際關係 | | |
---|
| 衝突 | - 社會影響
- 偏見
刻板印象
- 最小團體研究典範
- 現實衝突理論
- 歧視
- 社會優勢取向
|
---|
| 社會影響 | |
---|
| 群体动力学 | - 歸屬感
- 社會認同理論
- 社会助长
- 社会惰化
- 團體凝聚力
- 群體發展
- 群体极化
- 團體迷思
- 錯誤共識效應
- 责任分散
- 社会比较理论
自我提升
|
---|
| 侵略 | |
---|
| 利他主义 | |
---|
| 文化 | |
---|
| 自我概念 | |
---|
| 归因理论 | - 解釋風格
- 反事實思考
- 框架效應
- 確認偏誤
- 觀察者期望效應
启发法
- 基本歸因謬誤
- 自利性偏差
|
---|
|
规范控制 | - FAST: 821653
- GND: 4003990-0
- LCCN: sh85009789
- NDL: 00565509
|
---|
|
bxwgXnI8z3Yw zfbT3jsJ
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...