周静帝

Multi tool usebody.skin-minerva .mw-parser-output table.infobox captiontext-align:center
周靜帝 |
---|
概要 |
---|
姓名 | 宇文衍 |
---|
谥号 | 靜皇帝 |
---|
陵墓 | 恭陵 |
---|
政权 | 北周
|
---|
在世 | 573年-581年 |
---|
在位 | 579年-581年 |
---|
年号 |
大象:579年二月-580年
大定:581年正月-二月 |
---|
周靜帝宇文.mw-parser-output ruby>rt,.mw-parser-output ruby>rtcfont-feature-settings:"ruby"1.mw-parser-output ruby.largefont-size:250%.mw-parser-output ruby.largerfont-size:300%.mw-parser-output ruby.large>rt,.mw-parser-output ruby.large>rtcfont-size:.3em.mw-parser-output ruby.larger>rt,.mw-parser-output ruby.larger>rtcfont-size:.25em
闡(chǎn/ㄔㄢˇ)(573年-581年),原名宇文衍[1][2],代郡武川县(今内蒙古自治区呼和浩特市武川县)人,北周末代皇帝(第五代,579年—581年在位),周宣帝宇文贇長子。母親是朱滿月。
生平
579年,受宣帝內禪即位,時年七歲。次年,宣帝崩。刘昉、鄭译決定以楊堅为輔政大臣(后李德林提议下成为大丞相)。期间杨坚平定尉迟迥之乱、剪除北周宗室,逐渐形成代国之势。
大象三年(581年)北周静帝禅让帝位于杨坚,杨坚登基。至此北周滅亡,隋朝建立。楊堅封宇文阐为介国公,食邑一万户,车服礼乐仍按北周天子的旧制,上书皇帝不称为表,皇帝回复不称诏。虽有这样的规定,实际上未能实行。
五月壬申日(《隋书》作五月辛未日 ),杨坚暗中派人殺死介国公宇文阐,时年九岁,后表示大为震惊,发布死讯,在朝堂举哀,隆重祭悼,谥为静皇帝,葬在恭陵;以周静帝的堂叔祖宇文洛继为介国公[3][4]。
家族
后妃
参考资料
^ 《周书·卷八·帝纪第八》:静皇帝讳衍,后改为阐,宣帝长子也。
^ 《北史·卷十·周本纪下第十》:静皇帝讳衍,后改名阐,宣帝之长子也。
^ 《隋书·卷一·帝纪第一》:辛未,介国公薨,上举哀于朝堂,以其族人洛嗣焉。
^ 《资治通鉴·卷第一百七十五》:隋主潜害周静帝而为之举哀,葬于恭陵;以其族人洛为嗣。
中国北方君主
|
---|
前任: 父亲周宣帝 宇文赟
| 北朝 · 北周皇帝 579年3月 - 581年3月
| 末任
|
中國北方皇帝 579年3月 - 581年3月
| 繼任: 隋文帝 杨坚
|
北周君主
|
---|
| 详见:北周君主列表、北周皇帝世系图
| | 追尊 | 德帝 ~ 文帝
|
---|
| 统治 |
天王 | 孝闵帝 → 明帝
|
---|
| 皇帝 | 明帝 → 武帝 → 宣帝 → 静帝
|
---|
|
---|
| 三皇五帝 → 夏 → 商 → 周 → 秦 → 汉 → 三国 → 晋 / 十六国 → 南朝 / 元魏 – 北齐 – 北周 → 隋 → 唐 → 五代 – 十國 → 宋 / 西夏 / 辽 / 金 → 元 → 明 → 清 → 民国 / 共和国
|
|
Mzz2b1IqmC,T4DCDK7hLA
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...