Python - pandas explode rows by turns










1















I have a dataframe as below.



df = DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


Now I extracted letters from B1-B3 and add to new columns U1-U3 get:



 B1 B2 B3 U1 U2 U3 
0 1C C
1 3A 1A A A
2 41A 28A 3A A A A


and I want to let the row to explode like this:



 B1 B2 B3 U1 U2 U3 
0 1C C
1 3A 1A A
2 3A 1A A
3 41A 28A 3A A
4 41A 28A 3A A
5 41A 28A 3A A


Thanks in advance










share|improve this question
























  • Your original df will only have columns B1 B2 & B3, I suppose?

    – Rahul Agarwal
    Nov 15 '18 at 8:19











  • @RahulAgarwal Yes

    – xiumpt
    Nov 15 '18 at 8:22















1















I have a dataframe as below.



df = DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


Now I extracted letters from B1-B3 and add to new columns U1-U3 get:



 B1 B2 B3 U1 U2 U3 
0 1C C
1 3A 1A A A
2 41A 28A 3A A A A


and I want to let the row to explode like this:



 B1 B2 B3 U1 U2 U3 
0 1C C
1 3A 1A A
2 3A 1A A
3 41A 28A 3A A
4 41A 28A 3A A
5 41A 28A 3A A


Thanks in advance










share|improve this question
























  • Your original df will only have columns B1 B2 & B3, I suppose?

    – Rahul Agarwal
    Nov 15 '18 at 8:19











  • @RahulAgarwal Yes

    – xiumpt
    Nov 15 '18 at 8:22













1












1








1


1






I have a dataframe as below.



df = DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


Now I extracted letters from B1-B3 and add to new columns U1-U3 get:



 B1 B2 B3 U1 U2 U3 
0 1C C
1 3A 1A A A
2 41A 28A 3A A A A


and I want to let the row to explode like this:



 B1 B2 B3 U1 U2 U3 
0 1C C
1 3A 1A A
2 3A 1A A
3 41A 28A 3A A
4 41A 28A 3A A
5 41A 28A 3A A


Thanks in advance










share|improve this question
















I have a dataframe as below.



df = DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


Now I extracted letters from B1-B3 and add to new columns U1-U3 get:



 B1 B2 B3 U1 U2 U3 
0 1C C
1 3A 1A A A
2 41A 28A 3A A A A


and I want to let the row to explode like this:



 B1 B2 B3 U1 U2 U3 
0 1C C
1 3A 1A A
2 3A 1A A
3 41A 28A 3A A
4 41A 28A 3A A
5 41A 28A 3A A


Thanks in advance







python pandas dataframe






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 15 '18 at 9:39







xiumpt

















asked Nov 15 '18 at 7:34









xiumptxiumpt

565




565












  • Your original df will only have columns B1 B2 & B3, I suppose?

    – Rahul Agarwal
    Nov 15 '18 at 8:19











  • @RahulAgarwal Yes

    – xiumpt
    Nov 15 '18 at 8:22

















  • Your original df will only have columns B1 B2 & B3, I suppose?

    – Rahul Agarwal
    Nov 15 '18 at 8:19











  • @RahulAgarwal Yes

    – xiumpt
    Nov 15 '18 at 8:22
















Your original df will only have columns B1 B2 & B3, I suppose?

– Rahul Agarwal
Nov 15 '18 at 8:19





Your original df will only have columns B1 B2 & B3, I suppose?

– Rahul Agarwal
Nov 15 '18 at 8:19













@RahulAgarwal Yes

– xiumpt
Nov 15 '18 at 8:22





@RahulAgarwal Yes

– xiumpt
Nov 15 '18 at 8:22












1 Answer
1






active

oldest

votes


















2














I think, it needs 3 step solution of



1) extracting the Alphabates from data and creating new columns,



2) duplicating the rows w.r.t values and



3) masking with identity matrix.



df = pd.DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


1) Extracting the Alphabates from the rows and assigning as columns



df = df.merge(df.apply(lambda x: x.str.extract('([A-Za-z])')).add_prefix('U_'), left_index=True,right_index=True,how='outer')


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C NaN NaN
1 3A 1A A A NaN
2 41A 28A 3A A A A


2) You can try of duplicating the rows of dataframe wherever it has more than 1 value



# Duplicating the rows of dataframe
val = df[['U_B1','U_B2','U_B3']].notnull().sum(axis=1)
df1 = df.loc[np.repeat(val.index,val)]


-> 3) then by grouping with index, pick only masked values of identity matrix(np.identity) w.r.t length of each group.



df1[['U_B1','U_B2','U_B3']] = df1.groupby(df1.index)['U_B1','U_B2','U_B3'].apply(lambda x: x.dropna(axis=1).mask(np.identity(len(x))==0))


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C
1 3A 1A A
1 3A 1A A
2 41A 28A 3A A
2 41A 28A 3A A
2 41A 28A 3A A





share|improve this answer




















  • 1





    In the original df, columns U1 ec. doesn't exist

    – Rahul Agarwal
    Nov 15 '18 at 8:41











  • @RahulAgarwal i just edited my response to incorporate the change :-)

    – Naga Kiran
    Nov 15 '18 at 9:09











  • at the line df = df.merge it shows If using all scalar values, you must pass an index

    – xiumpt
    Nov 15 '18 at 9:19











  • I checked it again, can you pass the json form of your dataframe ?

    – Naga Kiran
    Nov 15 '18 at 9:25






  • 1





    And I found that other line of code is ok to run, using the second block as df in my question which has extracted alphabates

    – xiumpt
    Nov 15 '18 at 9:49











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53314441%2fpython-pandas-explode-rows-by-turns%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2














I think, it needs 3 step solution of



1) extracting the Alphabates from data and creating new columns,



2) duplicating the rows w.r.t values and



3) masking with identity matrix.



df = pd.DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


1) Extracting the Alphabates from the rows and assigning as columns



df = df.merge(df.apply(lambda x: x.str.extract('([A-Za-z])')).add_prefix('U_'), left_index=True,right_index=True,how='outer')


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C NaN NaN
1 3A 1A A A NaN
2 41A 28A 3A A A A


2) You can try of duplicating the rows of dataframe wherever it has more than 1 value



# Duplicating the rows of dataframe
val = df[['U_B1','U_B2','U_B3']].notnull().sum(axis=1)
df1 = df.loc[np.repeat(val.index,val)]


-> 3) then by grouping with index, pick only masked values of identity matrix(np.identity) w.r.t length of each group.



df1[['U_B1','U_B2','U_B3']] = df1.groupby(df1.index)['U_B1','U_B2','U_B3'].apply(lambda x: x.dropna(axis=1).mask(np.identity(len(x))==0))


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C
1 3A 1A A
1 3A 1A A
2 41A 28A 3A A
2 41A 28A 3A A
2 41A 28A 3A A





share|improve this answer




















  • 1





    In the original df, columns U1 ec. doesn't exist

    – Rahul Agarwal
    Nov 15 '18 at 8:41











  • @RahulAgarwal i just edited my response to incorporate the change :-)

    – Naga Kiran
    Nov 15 '18 at 9:09











  • at the line df = df.merge it shows If using all scalar values, you must pass an index

    – xiumpt
    Nov 15 '18 at 9:19











  • I checked it again, can you pass the json form of your dataframe ?

    – Naga Kiran
    Nov 15 '18 at 9:25






  • 1





    And I found that other line of code is ok to run, using the second block as df in my question which has extracted alphabates

    – xiumpt
    Nov 15 '18 at 9:49
















2














I think, it needs 3 step solution of



1) extracting the Alphabates from data and creating new columns,



2) duplicating the rows w.r.t values and



3) masking with identity matrix.



df = pd.DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


1) Extracting the Alphabates from the rows and assigning as columns



df = df.merge(df.apply(lambda x: x.str.extract('([A-Za-z])')).add_prefix('U_'), left_index=True,right_index=True,how='outer')


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C NaN NaN
1 3A 1A A A NaN
2 41A 28A 3A A A A


2) You can try of duplicating the rows of dataframe wherever it has more than 1 value



# Duplicating the rows of dataframe
val = df[['U_B1','U_B2','U_B3']].notnull().sum(axis=1)
df1 = df.loc[np.repeat(val.index,val)]


-> 3) then by grouping with index, pick only masked values of identity matrix(np.identity) w.r.t length of each group.



df1[['U_B1','U_B2','U_B3']] = df1.groupby(df1.index)['U_B1','U_B2','U_B3'].apply(lambda x: x.dropna(axis=1).mask(np.identity(len(x))==0))


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C
1 3A 1A A
1 3A 1A A
2 41A 28A 3A A
2 41A 28A 3A A
2 41A 28A 3A A





share|improve this answer




















  • 1





    In the original df, columns U1 ec. doesn't exist

    – Rahul Agarwal
    Nov 15 '18 at 8:41











  • @RahulAgarwal i just edited my response to incorporate the change :-)

    – Naga Kiran
    Nov 15 '18 at 9:09











  • at the line df = df.merge it shows If using all scalar values, you must pass an index

    – xiumpt
    Nov 15 '18 at 9:19











  • I checked it again, can you pass the json form of your dataframe ?

    – Naga Kiran
    Nov 15 '18 at 9:25






  • 1





    And I found that other line of code is ok to run, using the second block as df in my question which has extracted alphabates

    – xiumpt
    Nov 15 '18 at 9:49














2












2








2







I think, it needs 3 step solution of



1) extracting the Alphabates from data and creating new columns,



2) duplicating the rows w.r.t values and



3) masking with identity matrix.



df = pd.DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


1) Extracting the Alphabates from the rows and assigning as columns



df = df.merge(df.apply(lambda x: x.str.extract('([A-Za-z])')).add_prefix('U_'), left_index=True,right_index=True,how='outer')


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C NaN NaN
1 3A 1A A A NaN
2 41A 28A 3A A A A


2) You can try of duplicating the rows of dataframe wherever it has more than 1 value



# Duplicating the rows of dataframe
val = df[['U_B1','U_B2','U_B3']].notnull().sum(axis=1)
df1 = df.loc[np.repeat(val.index,val)]


-> 3) then by grouping with index, pick only masked values of identity matrix(np.identity) w.r.t length of each group.



df1[['U_B1','U_B2','U_B3']] = df1.groupby(df1.index)['U_B1','U_B2','U_B3'].apply(lambda x: x.dropna(axis=1).mask(np.identity(len(x))==0))


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C
1 3A 1A A
1 3A 1A A
2 41A 28A 3A A
2 41A 28A 3A A
2 41A 28A 3A A





share|improve this answer















I think, it needs 3 step solution of



1) extracting the Alphabates from data and creating new columns,



2) duplicating the rows w.r.t values and



3) masking with identity matrix.



df = pd.DataFrame(['B1': '1C', 'B2': '', 'B3': '', ,
'B1': '3A', 'B2': '1A', 'B3': '',
'B1': '41A', 'B2': '28A', 'B3': '3A'])

B1 B2 B3
0 1C
1 3A 1A
2 41A 28A 3A


1) Extracting the Alphabates from the rows and assigning as columns



df = df.merge(df.apply(lambda x: x.str.extract('([A-Za-z])')).add_prefix('U_'), left_index=True,right_index=True,how='outer')


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C NaN NaN
1 3A 1A A A NaN
2 41A 28A 3A A A A


2) You can try of duplicating the rows of dataframe wherever it has more than 1 value



# Duplicating the rows of dataframe
val = df[['U_B1','U_B2','U_B3']].notnull().sum(axis=1)
df1 = df.loc[np.repeat(val.index,val)]


-> 3) then by grouping with index, pick only masked values of identity matrix(np.identity) w.r.t length of each group.



df1[['U_B1','U_B2','U_B3']] = df1.groupby(df1.index)['U_B1','U_B2','U_B3'].apply(lambda x: x.dropna(axis=1).mask(np.identity(len(x))==0))


Out:



 B1 B2 B3 U_B1 U_B2 U_B3
0 1C C
1 3A 1A A
1 3A 1A A
2 41A 28A 3A A
2 41A 28A 3A A
2 41A 28A 3A A






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 15 '18 at 10:13

























answered Nov 15 '18 at 8:38









Naga KiranNaga Kiran

2,3271516




2,3271516







  • 1





    In the original df, columns U1 ec. doesn't exist

    – Rahul Agarwal
    Nov 15 '18 at 8:41











  • @RahulAgarwal i just edited my response to incorporate the change :-)

    – Naga Kiran
    Nov 15 '18 at 9:09











  • at the line df = df.merge it shows If using all scalar values, you must pass an index

    – xiumpt
    Nov 15 '18 at 9:19











  • I checked it again, can you pass the json form of your dataframe ?

    – Naga Kiran
    Nov 15 '18 at 9:25






  • 1





    And I found that other line of code is ok to run, using the second block as df in my question which has extracted alphabates

    – xiumpt
    Nov 15 '18 at 9:49













  • 1





    In the original df, columns U1 ec. doesn't exist

    – Rahul Agarwal
    Nov 15 '18 at 8:41











  • @RahulAgarwal i just edited my response to incorporate the change :-)

    – Naga Kiran
    Nov 15 '18 at 9:09











  • at the line df = df.merge it shows If using all scalar values, you must pass an index

    – xiumpt
    Nov 15 '18 at 9:19











  • I checked it again, can you pass the json form of your dataframe ?

    – Naga Kiran
    Nov 15 '18 at 9:25






  • 1





    And I found that other line of code is ok to run, using the second block as df in my question which has extracted alphabates

    – xiumpt
    Nov 15 '18 at 9:49








1




1





In the original df, columns U1 ec. doesn't exist

– Rahul Agarwal
Nov 15 '18 at 8:41





In the original df, columns U1 ec. doesn't exist

– Rahul Agarwal
Nov 15 '18 at 8:41













@RahulAgarwal i just edited my response to incorporate the change :-)

– Naga Kiran
Nov 15 '18 at 9:09





@RahulAgarwal i just edited my response to incorporate the change :-)

– Naga Kiran
Nov 15 '18 at 9:09













at the line df = df.merge it shows If using all scalar values, you must pass an index

– xiumpt
Nov 15 '18 at 9:19





at the line df = df.merge it shows If using all scalar values, you must pass an index

– xiumpt
Nov 15 '18 at 9:19













I checked it again, can you pass the json form of your dataframe ?

– Naga Kiran
Nov 15 '18 at 9:25





I checked it again, can you pass the json form of your dataframe ?

– Naga Kiran
Nov 15 '18 at 9:25




1




1





And I found that other line of code is ok to run, using the second block as df in my question which has extracted alphabates

– xiumpt
Nov 15 '18 at 9:49






And I found that other line of code is ok to run, using the second block as df in my question which has extracted alphabates

– xiumpt
Nov 15 '18 at 9:49




















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53314441%2fpython-pandas-explode-rows-by-turns%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Top Tejano songwriter Luis Silva dead of heart attack at 64

政党

天津地下鉄3号線