Environmental Microbiology

Skip to Main Content






if(true)
document.getElementById("skipNavigationLink").onclick =function skipElement ()
var element = document.getElementById('article__content');
if(element == null


































The full text of this article hosted at iucr.org is unavailable due to technical difficulties.















































































Environmental Microbiology


Volume 1, Issue 3
Environmental Microbiology banner





Adaptation of Pseudomonas fluorescens to the plant rhizosphere




Paul B. Rainey

Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.


Search for more papers by this author






First published: 21 April 2002

https://doi.org/10.1046/j.1462-2920.1999.00040.x

Cited by: 190







Abstract



Saprophytic Pseudomonas are common root‐colonizing bacteria that can improve plant health. Efficient exploitation of these bacteria in agriculture requires knowledge of traits that enhance ecological performance in the rhizosphere. Here, I describe the development and application of a promoter‐trapping technology (IVET) that enables the isolation of Pseudomonas fluorescens genes that show elevated levels of expression in the rhizosphere. Using IVET, 20 P. fluorescens genes were identified that are induced during rhizosphere colonization, and their patterns of expression were analysed in laboratory media and in the rhizosphere. Fourteen genes showed significant homology to sequences in GenBank that are involved in nutrient acquisition, stress response, or secretion; six showed no homology. Seven of the rhizosphere‐induced (rhi) genes have homology to known non‐Pseudomonas genes. One of the rhi genes (hrcC) is a component of a type III secretion pathway, not previously known in non‐parasitic bacteria. Together, these genes provide a view of the rhizosphere environment as perceived by a rhizosphere colonist, and suggest that the nature of the association between P. fluorescens and the plant root may be more complex and intimate than previously thought.






Citing Literature

Number of times cited according to CrossRef: 190



  • , Diversity,
    Functions, and Stress Responses of Soil Microorganisms
    , Plant
    Microbiome: Stress Response
    , 10.1007/978-981-10-5514-0_1, (1-19),
    (2018).



  • ,
    Root mediated uptake of Salmonella is different from phyto-pathogen and associated
    with the colonization of edible organs
    , BMC Plant Biology, 10.1186/s12870-018-1578-9, 18, 1,
    (2018).



  • , Transcriptomic profiling of Burkholderia phymatum STM815,
    Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response
    to Mimosa pudica root exudates illuminates the molecular basis of their nodulation
    competitiveness and symbiotic evolutionary history
    ,
    BMC Genomics,
    10.1186/s12864-018-4487-2,
    19, 1,
    (2018).



  • , Pseudomonadaceae:
    From Biocontrol to Plant Growth Promotion
    , Rhizotrophs:
    Plant Growth Promotion to Bioremediation
    , 10.1007/978-981-10-4862-3_3, (39-68), (2017).



  • , Adaptive evolution
    by spontaneous domain fusion and protein relocalization
    ,
    Nature Ecology & Evolution,
    10.1038/s41559-017-0283-7,
    1, 10,
    (1562-1568), (2017).


  • , Evolutionary convergence in experimental Pseudomonas
    populations
    , The
    ISME Journal
    , 11, 3,
    (589)
    , (2017).


  • ,
    Characterization and potential of plant growth promoting rhizobacteria isolated
    from native Andean crops
    , World
    Journal of Microbiology and Biotechnology
    , 33, 11,
    (2017).


  • , Emerging Significance
    of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspective Towards
    Sustainable Agriculture
    , Probiotics and Plant
    Health
    , 10.1007/978-981-10-3473-2_10, (233-251),
    (2017).


  • ,
    Unravelling the complexity and redundancy of carbon catabolic repression in
    Pseudomonas fluorescens SBW25
    , Molecular
    Microbiology
    , 105, 4,
    (589-605)
    , (2017).


  • , Arthrobacter pokkalii sp nov, a Novel Plant Associated
    Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali
    Rice, Kerala, India
    , PLOS
    ONE
    , 11, 3,
    (e0150322)
    , (2016).


  • , Variation of the Pseudomonas
    community structure on oak leaf lettuce during storage detected by culture-dependent
    and -independent methods
    , International
    Journal of Food Microbiology
    , 216, (95),
    (2016).


  • ,
    Light dazzles from the black box: whole-cell biosensors are ready to inform
    on fundamental soil biological processes
    , Chemical and Biological Technologies in Agriculture, 3,
    1
    , (2016).


  • , De Novo Sequencing and Assembly Analysis of the Pseudostellaria
    heterophylla Transcriptome
    , PLOS
    ONE
    , 11, 10,
    (e0164235)
    , (2016).


  • , Rhizosphere
    selection of Pseudomonas putida KT2440 variants with increased fitness associated
    to changes in gene expression
    , Environmental
    Microbiology Reports
    , 8, 5,
    (842-850)
    , (2016).


  • ,
    Proteome analysis of Pseudomonas putida F1 genes induced in soil environments, Environmental Microbiology
    Reports
    , 8, 5,
    (825-832)
    , (2016).


  • , Quantitative real-time PCR and high-resolution melting
    (HRM) analysis for strain-specific monitoring of fluorescent pseudomonads used as
    biocontrol agents against soil-borne pathogens of food crops
    ,
    Trends in Food Science & Technology, 46,
    2
    , (277), (2015).


  • ,
    Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony
    Switching in Pseudomonas fluorescens
    , PLOS Biology, 13, 3,
    (e1002109), (2015).


  • , Soil Fertility Dynamics vis-à-vis Climate Change in
    Citrus
    , Climate Dynamics in Horticultural Science,
    Volume Two
    , 10.1201/b18038-12, (179-211),
    (2015).


  • ,
    Comparative genomics of Pseudomonas fluorescens subclade III strains from human
    lungs
    , BMC Genomics, 16,
    1
    , (2015).


  • , Detection and characterization
    of a bacteriocin, putadicin T01, produced byPseudomonas putidaisolated from hot spring
    water
    , APMIS, 123,
    3
    , (260), (2015).


  • , Effect of Iranian strains ofPseudomonasspp. on the
    control of root-knot nematodes on Pistachios
    , Biocontrol Science and Technology,
    25, 3,
    (291), (2015).


  • , Impacts of bulk soil microbial community structure
    on rhizosphere microbiomes of Zea mays
    , Plant and Soil, 392, 1-2,
    (115), (2015).


  • , Experimental evolution reveals hidden diversity in evolutionary
    pathways
    , eLife, 4,
    (2015).


  • , The genetic toolbox for Acidovorax temperans, Journal of Microbiological
    Methods
    , 115, (129),
    (2015).


  • ,
    The Genus Pseudomonas, Practical Handbook
    of Microbiology, Third Edition
    , 10.1201/b17871-24,
    (321-344)
    , (2015).


  • , A high‐throughput
    screen for ligand binding reveals the specificities of three amino acid chemoreceptors
    from seudomonas syringae pv. actinidiae
    , Molecular Microbiology,
    96, 4,
    (694-707), (2015).


  • ,
    Molecular mechanisms of xylose utilization by seudomonas fluorescens: overlapping
    genetic responses to xylose, xylulose, ribose and mannitol
    ,
    Molecular Microbiology,
    98, 3,
    (553-570), (2015).


  • , Adaptive synonymous mutations in an experimentally evolved
    Pseudomonas fluorescens population
    , Nature
    Communications
    , 5, (2014).


  • , darR and darS are regulatory genes that modulate 2-hexyl,
    5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606
    , Microbiology, 160,
    Pt_12
    , (2670), (2014).


  • , The role of
    isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that
    triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine
    max (L.) Merr. cv. Osumi
    , Plant
    Physiology and Biochemistry
    , 82, (9),
    (2014).


  • , Prevalence of type
    III secretion system in effective biocontrol pseudomonads
    ,
    Research in Microbiology,
    165, 4,
    (300), (2014).


  • , The biosurfactant viscosin produced by seudomonas
    fluorescens SBW25 aids spreading motility and plant growth promotion
    ,
    Environmental Microbiology,
    16, 7,
    (2267-2281), (2014).


  • , Microbiology, Genomics, and Clinical Significance
    of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans
    , Clinical Microbiology Reviews, 27,
    4
    , (927), (2014).


  • , Characterization of the SPI‐1 and Rsp type three secretion
    systems in seudomonas fluorescens F113
    , Environmental Microbiology Reports,
    5, 3,
    (377-386), (2013).


  • ,
    Identification of reciprocal adhesion genes in pathogenic and non‐pathogenic
    Pseudomonas
    , Environmental
    Microbiology
    , 15, 1,
    (36-48)
    , (2012).


  • , Probiotics for Plants: Rhizospheric Microbiome and Plant
    Fitness
    , Molecular Microbial Ecology of the
    Rhizosphere
    ,
    (713-721)
    , (2013).


  • , Multilocus Sequence Analysis of Nectar Pseudomonads Reveals
    High Genetic Diversity and Contrasting Recombination Patterns
    ,
    PLoS ONE, 8, 10,
    (e75797), (2013).


  • , Bacterial
    siderophores efficiently provide iron to iron-starved tomato plants in hydroponics
    culture
    , Antonie
    van Leeuwenhoek
    , 104, 3,
    (321)
    , (2013).


  • , Colonization strategies of Pseudomonas fluorescens
    Pf0-1: activation of soil-specific genes important for diverse and specific environments
    , BMC Microbiology, 10.1186/1471-2180-13-92,
    13, 1,
    (92), (2013).


  • , Combined Effects
    of Wheat Roots and Pathogenic Fungus Gaeumannomyces graminis var. tritici on Gene
    Expression of the Biocontrol Bacterium Pseudomonas fluorescens Pf29Arp
    , Molecular Microbial Ecology of the Rhizosphere, (643-653),
    (2013).


  • ,
    Rhizobial Genetic Repertoire to Inhabit Legume and Nonlegume Rhizospheres,
    Molecular Microbial Ecology of the Rhizosphere, (495-500),
    (2013).


  • ,
    Using Genomics to Unveil Bacterial Determinants of Rhizosphere Life Style,
    Molecular Microbial Ecology of the Rhizosphere, (5-16),
    (2013).


  • , IntroducedPseudomonas fluorescensVUPf5
    as an important biocontrol agent for controllingGaeumannomyces graminisvar.triticithe
    causal agent of take-all disease in wheat
    , Archives Of Phytopathology And Plant Protection, 46,
    17
    , (2104), (2013).


  • ,
    Plant–bacteria interactions in the removal of pollutants,
    Current Opinion in Biotechnology, 10.1016/j.copbio.2012.09.011, 24,
    3
    , (467-473), (2013).



  • ,
    Identification of
    Salmonella enterica
    Genes with a Role in Persistence on Lettuce Leaves During Cold Storage by Recombinase-Based
    In Vivo Expression Technology
    , Phytopathology, 10.1094/PHYTO-10-12-0254-FI, 103,
    4
    , (362-372), (2013).


  • , Motility, Biofilm Formation,
    and Rhizosphere Colonization by Pseudomonas fluorescens F113
    , Molecular
    Microbial Ecology of the Rhizosphere
    , (723-732), (2013).


  • , Genome
    Transcriptome Analysis and Functional Characterization of a Nitrogen‐Fixation Island
    in Root‐Associated Pseudomonas stutzeri
    , Molecular Microbial Ecology of the Rhizosphere, (851-863),
    (2013).


  • , Exploiting
    New Systems‐Based Strategies to Elucidate Plant–Bacterial Interactions in the Rhizosphere
    ,
    Molecular Microbial Ecology of the Rhizosphere, (57-68),
    (2013).


  • , Identification and
    Mutational Activation of Niche‐Specific Genes Provide Insight into Regulatory Networks
    and Bacterial Function in Complex Environments
    , Molecular
    Microbial Ecology of the Rhizosphere
    , (875-882), (2013).


  • , EXPLORING THE SOCIOBIOLOGY OF PYOVERDIN‐PRODUCING PSEUDOMONAS, Evolution, 67,
    11
    , (3161-3174), (2013).


  • , The rhizosphere
    microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic
    microorganisms
    , FEMS
    Microbiology Reviews
    , 37, 5,
    (634-663)
    , (2013).


  • , The Gac regulon of seudomonas fluorescens SBW25, Environmental Microbiology
    Reports
    , 5, 4,
    (608-619)
    , (2013).


  • , ThedarGenes ofPseudomonas chlororaphisPCL1606 Are
    Crucial for Biocontrol Activity via Production of the Antifungal Compound 2-Hexyl,
    5-Propyl Resorcinol
    , Molecular
    Plant-Microbe Interactions
    , 26, 5,
    (554)
    , (2013).


  • , Amino acids in the rhizosphere: From plants to microbes, American Journal of Botany, 100,
    9
    , (1692-1705), (2013).


  • ,
    Adaptive Divergence in Experimental Populations of
    Pseudomonas fluorescens
    . V. Insight into the Niche Specialist Fuzzy Spreader Compels Revision of the Model
    Pseudomonas
    Radiation
    , Genetics, 10.1534/genetics.113.154948, 195,
    4
    , (1319-1335), (2013).


  • , Variation in transport explains polymorphism of histidine
    and urocanate utilization in a natural Pseudomonas population
    ,
    Environmental Microbiology,
    14, 8,
    (1941-1951), (2012).


  • , The origin and ecological
    significance of multiple branches for histidine utilization in Pseudomonas aeruginosa
    PAO1
    , Environmental
    Microbiology
    , 14, 8,
    (1929-1940)
    , (2012).


  • , Spatial Structure of Ecological Opportunity Drives Adaptation
    in a Bacterium
    , The
    American Naturalist
    , 180, 2,
    (270)
    , (2012).


  • ,
    Modulation of Host Immunity by Beneficial Microbes,
    Molecular Plant-Microbe Interactions, 25,
    2
    , (139), (2012).


  • ,
    Identification of Traits Shared by Rhizosphere-Competent Strains of Fluorescent
    Pseudomonads
    , Microbial
    Ecology
    , 64, 3,
    (725)
    , (2012).


  • , Characterization
    of the indole-3-glycerol phosphate synthase from Pseudomonas aeruginosa PAO1
    , The Protein Journal, 31,
    5
    , (359), (2012).


  • , Comparative Genomics
    of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits
    Involved in Multitrophic Interactions
    , PLoS Genetics, 8, 7,
    (e1002784), (2012).


  • ,
    Pivotal role of anthranilate dioxygenase genes in the adaptation of urkholderia
    multivorans ATCC 17616 in soil
    , FEMS
    Microbiology Letters
    , 330, 1,
    (46-55)
    , (2012).


  • , Effect of Acinetobacter sp on Metalaxyl Degradation
    and Metabolite Profile of Potato Seedlings (Solanum tuberosum L.) Alpha Variety
    , PLoS ONE,
    7, 2,
    (e31221), (2012).


  • , Impact
    of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain
    acillus amyloliquefaciens S499
    , FEMS
    Microbiology Ecology
    , 79, 1,
    (176-191)
    , (2011).


  • , ADAPTIVE LANDSCAPES IN EVOLVING POPULATIONS OF PSEUDOMONAS
    FLUORESCENS
    , Evolution, 65,
    11
    , (3048-3059), (2011).


  • ,

    Novel approaches of beneficial
    Pseudomonas
    in mitigation of plant diseases – an appraisal
    , Journal of Plant
    Interactions
    , 10.1080/17429145.2010.541944, 6,
    4
    , (195-205), (2011).


  • , The Sigma B Operon
    Is a Determinant of Fitness for aListeria monocytogenesSerotype 4b Strain in Soil
    , Foodborne Pathogens and Disease, 8,
    6
    , (699), (2011).


  • , Mutation of adegSHomologue
    inEnterobacter cloacaeDecreases Colonization and Biological Control of Damping-Off
    on Cucumber
    , Phytopathology, 101,
    2
    , (271), (2011).


  • , Functional genomics
    analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence
    , Biology and Fertility of Soils, 47,
    7
    , (729), (2011).


  • , The Xanthomonas campestris
    pv. vesicatoria citH gene is expressed early in the infection process of tomato and
    is positively regulated by the TctDE two‐component regulatory system
    ,
    Molecular Plant Pathology,
    12, 1,
    (57-71), (2010).


  • ,
    Pseudomonas genomes: diverse and adaptable, FEMS Microbiology Reviews,
    35, 4,
    (652-680), (2011).


  • , CbrAB‐dependent regulation of pcnB, a poly(A) polymerase
    gene involved in polyadenylation of RNA in Pseudomonas fluorescens
    ,
    Environmental Microbiology,
    12, 6,
    (1674-1683), (2010).


  • , Identification of Burkholderia multivorans ATCC 17616 genes
    induced in soil environment by in vivo expression technology
    ,
    Environmental Microbiology,
    12, 9,
    (2539-2558), (2010).


  • , Testing temperature‐induced proteomic changes in the
    plant‐associated bacterium Pseudomonas fluorescens SBW25
    ,
    Environmental Microbiology Reports, 2,
    3
    , (396-402), (2009).


  • , Acbb3-Type CytochromeCOxidase Contributes toRalstonia solanacearumR3bv2
    Growth in Microaerobic Environments and to Bacterial Wilt Disease Development in Tomato
    , Molecular Plant-Microbe Interactions, 23,
    8
    , (1042), (2010).


  • , Plant-Microbe Partnerships,
    Handbook of Hydrocarbon and Lipid Microbiology, 10.1007/978-3-540-77587-4_189, (2545-2574),
    (2010).


  • , Ecological fitness of Bacillus subtilis BGS3 regarding
    production of the surfactin lipopeptide in the rhizosphere
    ,
    Environmental Microbiology Reports, 1,
    2
    , (124-130), (2009).


  • , Impact
    of antifungals producing rhizobacteria on the performance of Vigna radiata in the
    presence of arbuscular mycorrhizal fungi
    , Mycorrhiza, 19, 8,
    (559), (2009).


  • , Effect of Wheat Roots
    Infected with the Pathogenic FungusGaeumannomyces graminisvar.triticion Gene Expression
    of the Biocontrol BacteriumPseudomonas fluorescensPf29Arp
    ,
    Molecular Plant-Microbe Interactions, 22,
    12
    , (1611), (2009).


  • , Phytoremediation and rhizoremediation of organic
    soil contaminants: Potential and challenges
    , Plant Science, 176, 1,
    (20), (2009).


  • , A conserved mechanism
    for nitrile metabolism in bacteria and plants
    , The Plant Journal, 57, 2,
    (243-253), (2008).


  • , Bacterial responses and interactions with plants during
    rhizoremediation
    , Microbial
    Biotechnology
    , 2, 4,
    (452-464)
    , (2009).


  • , The plant pathogenic fungus Gaeumannomyces graminis
    var. tritici improves bacterial growth and triggers early gene regulations in the
    biocontrol strain Pseudomonas fluorescens Pf29Arp
    ,
    New Phytologist,
    181, 2,
    (435-447), (2008).


  • , Molecular tools in rhizosphere microbiology—from single-cell
    to whole-community analysis
    , Plant
    and Soil
    , 10.1007/s11104-009-9946-8, 321,
    1-2
    , (483-512), (2009).



  • , Inter-kingdom
    encounters: recent advances in molecular bacterium–fungus interactions
    , Current Genetics, 10.1007/s00294-009-0241-2, 55,
    3
    , (233-243), (2009).



  • ,
    Adaptive Divergence in Experimental Populations of
    Pseudomonas fluorescens
    . IV. Genetic Constraints Guide Evolutionary Trajectories in a Parallel Adaptive Radiation
    , Genetics, 10.1534/genetics.109.107110, 183,
    3
    , (1041-1053), (2009).


  • , In vivo expression
    technology (IVET) selection of genes of Rhizobium leguminosarum biovar viciae A34
    expressed in the rhizosphere
    , FEMS
    Microbiology Letters
    , 282, 2,
    (219-227)
    , (2008).


  • , Regulation of copper homeostasis in Pseudomonas fluorescens
    SBW25
    , Environmental
    Microbiology
    , 10, 12,
    (3284-3294)
    , (2008).


  • ,
    Comparison of the Stress Response of Listeria monocytogenes Strains with Sprout
    Colonization
    , Journal
    of Food Protection
    , 71, 8,
    (1556)
    , (2008).


  • ,
    Bacillus lipopeptides: versatile weapons for plant disease biocontrol, Trends in Microbiology, 16,
    3
    , (115), (2008).


  • , Protection
    Against Pathogen and Salt Stress by Four Plant Growth-Promoting Rhizobacteria Isolated
    fromPinussp. onArabidopsis thaliana
    , Phytopathology, 98,
    6
    , (666), (2008).


  • , Transgenic tomato plants alter quorum
    sensing in plant growth‐promoting rhizobacteria
    , Plant Biotechnology Journal,
    6, 5,
    (442-452), (2008).


  • , Bacterial endophytes: recent developments and applications, FEMS Microbiology Letters, 278,
    1
    , (1-9), (2007).


  • , Effect of inoculation with putative plant growth‐promoting
    rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere
    microbial communities
    , Journal
    of Applied Microbiology
    , 105, 5,
    (1298-1309)
    , (2008).


  • ,
    Use of a novel nonantibiotic triple marker gene cassette to monitor high survival
    of Pseudomonas fluorescens SBW25 on winter wheat in the field
    ,
    FEMS Microbiology Ecology,
    63, 2,
    (156-168), (2007).


  • ,
    Salt‐Tolerant Rhizobacteria: Plant Growth Promoting Traits and Physiological
    Characterization Within Ecologically Stressed Environments
    , Plant‐Bacteria
    Interactions
    ,
    (257-281)
    , (2008).


  • , Molecular Mechanisms Underpinning Colonization of
    a Plant by Plant Growth‐Promoting Rhizobacteria
    , Plant‐Bacteria
    Interactions
    ,
    (111-128)
    , (2008).


  • , Pseudomonas–Plant
    Interactions
    , Pseudomonas, (353-376),
    (2008).


  • ,
    Amino Acids, Iron, and Growth Rate as Key Factors Influencing Production of
    the Pseudomonas Putida BTP1 Benzylamine Derivative Involved in Systemic Resistance
    Induction in Different Plants
    , Microbial
    Ecology
    , 10.1007/s00248-007-9275-5, 55,
    2
    , (280-292), (2007).



  • , Characterization of Phosphate-Solubilizing Fluorescent Pseudomonads
    from the Rhizosphere of Seabuckthorn Growing in the Cold Deserts of Himalayas
    , Current Microbiology, 10.1007/s00284-007-9042-3, 56,
    1
    , (73-79), (2007).



  • , Rhizoremediation of Cadmium Soil Using a Cadmium-Resistant
    Plant Growth-Promoting Rhizopseudomonad
    , Current Microbiology, 10.1007/s00284-008-9099-7, 56, 4,
    (403-407), (2008).



  • ,
    Dual Involvement of CbrAB and NtrBC in the Regulation of Histidine Utilization in
    Pseudomonas fluorescens
    SBW25
    , Genetics, 10.1534/genetics.107.081984, 178,
    1
    , (185-195), (2008).


  • , Pseudomonas putida 06909 genes expressed during colonization
    on mycelial surfaces and phenotypic characterization of mutants
    ,
    Journal of Applied Microbiology, 103,
    1
    , (120-132), (2006).


  • , Behavior and fate of chlorpyrifos introduced into soil–crop
    systems by irrigation
    , Chemosphere, 66,
    3
    , (391), (2007).


  • , Mutational activation of niche-specific genes provides
    insight into regulatory networks and bacterial function in a complex environment
    , Proceedings of the National
    Academy of Sciences
    , 104, 46,
    (18247)
    , (2007).


  • ,
    Biocontrol of Plant Pathogens, The Rhizosphere, 10.1201/9781420005585.ch10, (267-296),
    (2009).


  • , The
    Role of a P1-Type ATPase fromPseudomonas fluorescensSBW25 in Copper Homeostasis and
    Plant Colonization
    , Molecular
    Plant-Microbe Interactions
    , 20, 5,
    (581)
    , (2007).


  • ,
    Pyruvate dehydrogenase activity is important for colonization of seeds and roots
    by Enterobacter cloacae
    , Soil
    Biology and Biochemistry
    , 39, 8,
    (2150)
    , (2007).


  • , Root Interactions
    with Soil Microbial Communities and Processes
    , The
    Rhizosphere
    , 10.1016/B978-012088775-0/50003-3, (1-29),
    (2007).


  • , Construction
    and validation of a neutrally-marked strain of Pseudomonas fluorescens SBW25
    , Journal of Microbiological
    Methods
    , 71, 1,
    (78)
    , (2007).


  • , Identifying
    the genetic basis of ecologically and biotechnologically useful functions of the bacterium
    Burkholderia vietnamiensis
    , Environmental
    Microbiology
    , 9, 4,
    (1017-1034)
    , (2007).


  • , Integrated bioinformatic
    and phenotypic analysis of RpoN‐dependent traits in the plant growth‐promoting bacterium
    Pseudomonas fluorescens SBW25
    , Environmental
    Microbiology
    , 9, 12,
    (3046-3064)
    , (2007).


  • , Mutation in cyaA in Enterobacter
    cloacae decreases cucumber root colonization
    , Archives of Microbiology,
    10.1007/s00203-006-0177-6,
    187, 2,
    (101-115), (2006).



  • , Single-Cell Raman
    Spectral Profiles of Pseudomonas fluorescens SBW25 Reflects in vitro and in planta
    Metabolic History
    , Microbial
    Ecology
    , 10.1007/s00248-006-9138-5, 53,
    3
    , (414-425), (2007).



  • , Immigration history controls diversification in experimental
    adaptive radiation
    , Nature, 10.1038/nature05629,
    446, 7134, (436-439),
    (2007).



  • ,
    The Environmental Plasmid pQBR103 Alters the Single-Cell Raman Spectral Profile
    of Pseudomonas fluorescens SBW25
    , Microbial
    Ecology
    , 10.1007/s00248-006-9191-0, 53,
    3
    , (494-497), (2007).



  • , Screening
    for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded
    mediterranean ecosystems
    , First International
    Meeting on Microbial Phosphate Solubilization
    ,
    10.1007/978-1-4020-5765-6_7,
    (59-68), (2007).



  • ,
    Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial
    traits for crop protection
    , Antonie
    van Leeuwenhoek
    , 10.1007/s10482-007-9167-1, 92,
    4
    , (367-389), (2007).



  • , Sequence-based analysis of pQBR103; a representative
    of a unique, transfer-proficient mega plasmid resident in the microbial community
    of sugar beet
    , The
    ISME Journal
    , 10.1038/ismej.2007.47, 1,
    4
    , (331-340), (2007).



  • ,
    Genetic Analysis of the Histidine Utilization (
    hut
    ) Genes in
    Pseudomonas fluorescens
    SBW25
    , Genetics, 10.1534/genetics.107.075713, 176,
    4
    , (2165-2176), (2007).



  • ,

    Adaptive Divergence in Experimental Populations of
    Pseudomonas fluorescens
    . III. Mutational Origins of Wrinkly Spreader Diversity
    , Genetics, 10.1534/genetics.106.069906, 176,
    1
    , (441-453), (2007).


  • ,
    THE DYNAMICS OF DIVERSIFICATION IN EVOLVING PSEUDOMONAS POPULATIONS, Evolution, 60,
    3
    , (484-490), (2007).


  • , Phenotypic
    structure of Pseudomonas populations is altered under elevated pCO2 in the rhizosphere
    of perennial grasses
    , Soil
    Biology and Biochemistry
    , 38, 6,
    (1193)
    , (2006).


  • , Exploiting New Systems-Based
    Strategies to Elucidate Plant-Bacterial Interactions in the Rhizosphere
    , Microbial Ecology, 10.1007/s00248-006-9019-y, 51,
    3
    , (257-266), (2006).


  • , Modelling
    the rhizosphere: a review of methods for ‘upscaling’ to the whole‐plant scale
    , European Journal of Soil Science, 57,
    1
    , (13-25), (2006).


  • , Molecular‐based strategies to exploit Pseudomonas biocontrol
    strains for environmental biotechnology applications
    ,
    FEMS Microbiology Ecology,
    56, 2,
    (167-177), (2006).


  • , A two‐partner
    secretion system is involved in seed and root colonization and iron uptake by Pseudomonas
    putida KT2440
    , Environmental
    Microbiology
    , 8, 4,
    (639-647)
    , (2005).


  • ,
    THE DYNAMICS OF DIVERSIFICATION IN EVOLVING PSEUDOMONAS POPULATIONS, Evolution, 10.1554/05-673.1,
    60, 3,
    (484), (2006).



  • , Screening
    for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded
    mediterranean ecosystems
    , Plant
    and Soil
    , 10.1007/s11104-006-9055-x, 287,
    1-2
    , (59-68), (2006).



  • , Reporter
    Genes in Bacterial Inoculants Can Monitor Life Conditions and Functions in Soil
    ,
    Nucleic Acids and Proteins in Soil, 10.1007/3-540-29449-X_16, (375-395),
    (2006).



  • ,
    Adaptive Divergence in Experimental Populations of
    Pseudomonas fluorescens
    . II. Role of the GGDEF Regulator WspR in Evolution and Development of the Wrinkly
    Spreader Phenotype
    , Genetics, 10.1534/genetics.106.055863, 173,
    2
    , (515-526), (2006).


  • , Bioinformatics,
    genomics and evolution of non‐flagellar type‐III secretion systems: a Darwinian perpective⋆
    , FEMS Microbiology Reviews, 29,
    2
    , (201-229), (2008).


  • , Attachment of Microorganisms to Fresh Produce,
    Microbiology of Fruits and Vegetables, 10.1201/9781420038934.ch2, (33-73),
    (2010).


  • , Transcriptome profiling of bacterial responses to root
    exudates identifies genes involved in microbe-plant interactions
    ,
    Proceedings of the National Academy of Sciences, 102,
    48
    , (17454), (2005).


  • , The Type III Secretion System of BiocontrolPseudomonas
    fluorescensKD Targets the Phytopathogenic ChromistaPythium ultimumand Promotes Cucumber
    Protection
    , Molecular
    Plant-Microbe Interactions
    , 18, 9,
    (991)
    , (2005).


  • , FEEDBACK IN THE
    PLANT-SOIL SYSTEM
    , Annual
    Review of Environment and Resources
    , 30, 1,
    (75), (2005).


  • ,
    Colonization of Tomato Root Seedling by Pseudomonas fluorescens 92rkG5: Spatio–temporal
    Dynamics, Localization, Organization, Viability, and Culturability
    ,
    Microbial Ecology,
    50, 2,
    (289), (2005).


  • , Experimental Evolution
    ofPseudomonas fluorescensin Simple and Complex Environments
    ,
    The American Naturalist,
    166, 4,
    (470), (2005).


  • , Pseudomonas syringae genes induced during colonization
    of leaf surfaces
    , Environmental
    Microbiology
    , 7, 9,
    (1379-1391)
    , (2005).


  • , Screening for Putative PGPR to Improve Establishment of
    the Symbiosis Lactarius deliciosus-Pinus sp.
    , Microbial Ecology, 10.1007/s00248-004-0112-9, 50, 1,
    (82-89), (2005).


  • ,
    What can bacterial genome research teach us about bacteria–plant interactions?, Current Opinion in Plant Biology, 7,
    2
    , (137), (2004).


  • , Rhizosphere Bacterial
    Signalling: A Love Parade Beneath Our Feet
    , Critical Reviews in Microbiology,
    30, 4,
    (205), (2004).


  • , Genome-Wide Identification
    of Plant-Upregulated Genes ofErwinia chrysanthemi3937 Using a GFP-Based IVET Leaf
    Array
    , Molecular
    Plant-Microbe Interactions
    , 17, 9,
    (999)
    , (2004).


  • , Plant-associated Pseudomonas populations: molecular
    biology, DNA dynamics, and gene transfer
    , Plasmid, 52, 3,
    (139)
    , (2004).


  • ,
    The indigenous Pseudomonas plasmid pQBR103 encodes plant‐inducible genes, including
    three putative helicases
    , FEMS
    Microbiology Ecology
    , 51, 1,
    (9-17)
    , (2006).


  • ,
    Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI
    characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning
    electron microscopy
    , FEMS
    Microbiology Ecology
    , 48, 1,
    (79-87)
    , (2006).


  • , Ralstonia solanacearum genes induced during growth in tomato:
    an inside view of bacterial wilt
    , Molecular
    Microbiology
    , 53, 6,
    (1641-1660)
    , (2004).


  • ,
    Plant perceptions of plant growth-promoting
    Pseudomonas
    , Philosophical
    Transactions of the Royal Society of London. Series B: Biological Sciences
    , 10.1098/rstb.2003.1384,
    359, 1446, (907-918),
    (2004).


  • , Genes encoding a cellulosic
    polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25
    on plant surfaces
    , Molecular
    Ecology
    , 12, 11,
    (3109-3121)
    , (2003).


  • ,
    Pathogenicity and other genomic islands in plant pathogenic bacteria, Molecular Plant Pathology, 4,
    5
    , (407-420), (2003).


  • ,
    Genetic Analysis of a pH-Regulated Operon fromRhizobium tropiciCIAT899 Involved
    in Acid Tolerance and Nodulation Competitiveness
    , Molecular Plant-Microbe Interactions,
    16, 2,
    (159), (2003).


  • , Tales from the underground:
    molecular plant–rhizobacteria interactions
    , Plant, Cell & Environment,
    26, 2,
    (189-199), (2003).


  • , MOLECULAR CONTROL POINTS IN RHIZOSPHERE FOOD WEBS, Ecology,
    84, 4,
    (816-826), (2003).


  • , Rice seedling whole exudates and extracted alkylresorcinols
    induce stress‐response in Escherichia coli biosensors
    ,
    Environmental Microbiology,
    5, 5,
    (403-411), (2003).


  • ,
    New Scientific Paradigms for Probiotics and Prebiotics,
    Journal of Clinical Gastroenterology, 37,
    2
    , (105), (2003).


  • , Rhizobacterial Diversity in India and Its Influence
    on Soil and Plant Health
    , Biotechnology in
    India I
    , 10.1007/3-540-36488-9_2, (49-89),
    (2003).


  • ,
    The ecology of transfer of mobile genetic elements,
    FEMS Microbiology Ecology,
    42, 2,
    (187-197), (2006).


  • , Ecological
    and molecular maintenance strategies of mobile genetic elements
    ,
    FEMS Microbiology Ecology,
    42, 2,
    (177-185), (2006).


  • ,
    4 Molecular methods for monitoring bacterial gene expression during infection,
    Molecular Cellular Microbiology, 10.1016/S0580-9517(02)31005-5, (55-91),
    (2002).



  • , In Vivo Expression Technology (IVET) and Its Application
    in Plant-Associated Bacteria
    , The
    Plant Pathology Journal
    , 10.5423/PPJ.2002.18.2.057, 18,
    2
    , (57-62), (2002).


  • ,
    Alfalfa growth promotion by bacteria grown under iron limiting conditions, Advances in Environmental
    Research
    , 6, 3,
    (391)
    , (2002).


  • ,
    Identification of Pseudomonas syringae pv. tomato genes induced
    during infection of Arabidopsis thaliana
    , Molecular Microbiology,
    44, 1,
    (73-88), (2002).


  • , Mechanisms linking
    diversity, productivity and invasibility in experimental bacterial communities
    , Proceedings of the Royal Society
    of London. Series B: Biological Sciences
    , 10.1098/rspb.2002.2146, 269, 1506,
    (2277-2283)
    , (2002).


  • , Use of differential
    fluorescence induction and optical trapping to isolate environmentally induced genes
    , Environmental Microbiology, 3,
    6
    , (397-406), (2001).


  • , Plant
    Growth Promoting Rhizobacteria (PGPR)
    , Encyclopedia
    of Genetics
    , 10.1006/rwgn.2001.1636, (1477-1480),
    (2001).


  • , Root Colonization by Inoculated Plant Growth-Promoting
    Rhizobacteria
    , Biocontrol
    Science and Technology
    , 11, 5,
    (557)
    , (2001).


  • , Genomics and the Rhizosphere,
    eLS, (2012).


  • , MOLECULARDETERMINANTS
    OFRHIZOSPHERECOLONIZATION BYPSEUDOMONAS
    , Annual Review of Phytopathology,
    39, 1,
    (461), (2001).


  • ,
    Bacterial ABC transporters of amino acids, Research in Microbiology,
    152, 3-4, (259),
    (2001).


  • ,
    Molecular basis of plant growth promotion and biocontrol by rhizobacteria, Current Opinion in Plant Biology, 4,
    4
    , (343), (2001).


  • , Pseudomonas for biocontrol
    of phytopathogens: from functional genomics to commercial exploitation
    , Current Opinion in Biotechnology, 12,
    3
    , (289), (2001).


  • , Metabolic fingerprint of microbial communities from distinct
    maize rhizosphere compartments
    , European
    Journal of Soil Biology
    , 37, 2,
    (85)
    , (2001).


  • , Biomonitoring of pJP4‐carrying Pseudomonas chlororaphis
    with Trb protein‐specific antisera
    , Environmental
    Microbiology
    , 3, 11,
    (720-730)
    , (2002).


  • , cDNA‐AFLP analysis unravels a genome‐wide hrpG‐regulon
    in the plant pathogen Xanthomonas campestris pv. vesicatoria
    ,
    Molecular Microbiology,
    41, 6,
    (1271-1281), (2008).


  • , Type III secretion
    in plant growth‐promoting Pseudomonas fluorescens SBW25
    ,
    Molecular Microbiology,
    41, 5,
    (999-1014), (2008).


  • ,
    Applicability of non‐antibiotic resistance marker genes in ecological studies
    of introduced bacteria in forest soil
    , FEMS Microbiology Ecology,
    38, 2‐3, (179-188),
    (2006).


  • , Pseudomonas syringae pv. tomato: the right pathogen,
    of the right plant, at the right time
    , Molecular Plant Pathology,
    1, 5,
    (263-275), (2001).


  • , Assesment of Bacterial Pathogenesis by Analysis of Gene
    Expression in the Host
    , Annual
    Review of Genetics
    , 10.1146/annurev.genet.34.1.139, 34,
    1
    , (139-164), (2000).


  • , The biocontrol strain
    Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine
    lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase
    , Microbiology, 146,
    10
    , (2469), (2000).


  • , Immuno-capture differential
    display method (IDDM) for the detection of environmentally induced promoters in rhizobacteria
    , Journal of Microbiological
    Methods
    , 41, 1,
    (77)
    , (2000).


  • , Chromosomal Insertion
    of Phenazine-1-Carboxylic Acid Biosynthetic Pathway Enhances Efficacy of Damping-off
    Disease Control byPseudomonas fluorescens
    , Molecular Plant-Microbe Interactions,
    13, 12,
    (1293), (2000).


  • ,
    In vivo expression technology strategies: valuable tools for biotechnology, Current Opinion in Biotechnology, 10.1016/S0958-1669(00)00132-4, 11,
    5
    , (440-444), (2000).


  • , Pseudomonas entering the post‐genomic era, Environmental Microbiology, 2,
    3
    , (349-354), (2001).


  • , Quantification of biofilm
    structures by the novel computer program comstat
    , Microbiology, 146, 10,
    (2395), (2000).


  • , in vivo gene expression and the adaptive response: from
    pathogenesis to vaccines and antimicrobials
    , Philosophical Transactions of the Royal Society of London.
    Series B: Biological Sciences
    , 10.1098/rstb.2000.0604, 355,
    1397
    , (633-642), (2000).



  • , One ligand, two regulators and three binding sites:
    How KDPG controls primary carbon metabolism in Pseudomonas
    ,
    PLOS Genetics,
    10.1371/journal.pgen.1006839,
    13, 6,
    (e1006839), (2017).



  • ,
    Overlapping Protein-Encoding Genes in Pseudomonas fluorescens Pf0-1, PLoS Genetics, 10.1371/journal.pgen.1000094, 4,
    6
    , (e1000094), (2008).



  • , Impacts of Atmospheric
    CO2 and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil
    Bacteria
    , Frontiers
    in Plant Science
    , 10.3389/fpls.2018.01493, 9,
    (2018).



  • , Host
    Specificity and Spatial Distribution Preference of Three Pseudomonas Isolates
    , Frontiers in Microbiology, 10.3389/fmicb.2018.03263, 9,
    (2019).






var articleRef = document.querySelector('.article__body:not(.show-references) .article__references');
if (articleRef) articleRef.style.display = "none";












































































































if(window._satellite)
_satellite.pageBottom();






var _prum=[['id','59e8fecb3847311aab7b23c6'],['mark','firstbyte',(new Date()).getTime()]];(function()var s=document.getElementsByTagName('script')[0],p=document.createElement('script');p.async='async';p.src='//rum-static.pingdom.net/prum.min.js';s.parentNode.insertBefore(p,s);)();

Popular posts from this blog

Top Tejano songwriter Luis Silva dead of heart attack at 64

政党

天津地下鉄3号線