Environmental Microbiology
if(true)
document.getElementById("skipNavigationLink").onclick =function skipElement ()
var element = document.getElementById('article__content');
if(element == null
This Journal
Anywhere
The full text of this article hosted at iucr.org is unavailable due to technical difficulties.
Environmental Microbiology
Volume 1, Issue 3
Adaptation of Pseudomonas fluorescens to the plant rhizosphere
First published: 21 April 2002
Abstract
Saprophytic Pseudomonas are common root‐colonizing bacteria that can improve plant health. Efficient exploitation of these bacteria in agriculture requires knowledge of traits that enhance ecological performance in the rhizosphere. Here, I describe the development and application of a promoter‐trapping technology (IVET) that enables the isolation of Pseudomonas fluorescens genes that show elevated levels of expression in the rhizosphere. Using IVET, 20 P. fluorescens genes were identified that are induced during rhizosphere colonization, and their patterns of expression were analysed in laboratory media and in the rhizosphere. Fourteen genes showed significant homology to sequences in GenBank that are involved in nutrient acquisition, stress response, or secretion; six showed no homology. Seven of the rhizosphere‐induced (rhi) genes have homology to known non‐Pseudomonas genes. One of the rhi genes (hrcC) is a component of a type III secretion pathway, not previously known in non‐parasitic bacteria. Together, these genes provide a view of the rhizosphere environment as perceived by a rhizosphere colonist, and suggest that the nature of the association between P. fluorescens and the plant root may be more complex and intimate than previously thought.
Citing Literature
Number of times cited according to CrossRef: 190
Shyam
Narain Pandey, Murtaza Abid and Mirza Mohammad Abid Ali Khan, Diversity,
Functions, and Stress Responses of Soil Microorganisms, Plant
Microbiome: Stress Response, 10.1007/978-981-10-5514-0_1, (1-19),
(2018).Crossref
Kapudeep
Karmakar, Utpal Nath, Karaba
N. Nataraja and Dipshikha Chakravortty,
Root mediated uptake of Salmonella is different from phyto-pathogen and associated
with the colonization of edible organs, BMC Plant Biology, 10.1186/s12870-018-1578-9, 18, 1,
(2018).Crossref
Agnieszka
Klonowska, Rémy Melkonian, Lucie
Miché, Pierre Tisseyre and Lionel
Moulin, Transcriptomic profiling of Burkholderia phymatum STM815,
Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response
to Mimosa pudica root exudates illuminates the molecular basis of their nodulation
competitiveness and symbiotic evolutionary history,
BMC Genomics,
10.1186/s12864-018-4487-2,
19, 1,
(2018).Crossref
Roxane
Roquigny, Amy Novinscak, Adrien
Biessy and Martin Filion, Pseudomonadaceae:
From Biocontrol to Plant Growth Promotion, Rhizotrophs:
Plant Growth Promotion to Bioremediation, 10.1007/978-981-10-4862-3_3, (39-68), (2017).Crossref
Andrew
D. Farr, Philippe Remigi and Paul B. Rainey, Adaptive evolution
by spontaneous domain fusion and protein relocalization,
Nature Ecology & Evolution,
10.1038/s41559-017-0283-7,
1, 10,
(1562-1568), (2017).Crossref
Peter
A Lind, Andrew D Farr and Paul
B Rainey, Evolutionary convergence in experimental Pseudomonas
populations, The
ISME Journal, 11, 3,
(589), (2017).Crossref
Katty
Ogata-Gutiérrez, Carolina Chumpitaz-Segovia,
Jesus Lirio-Paredes, Mariella
M. Finetti-Sialer and Doris Zúñiga-Dávila,
Characterization and potential of plant growth promoting rhizobacteria isolated
from native Andean crops, World
Journal of Microbiology and Biotechnology, 33, 11,
(2017).Crossref
Gaurav
Yadav, Kanchan Vishwakarma, Shivesh Sharma, Vivek
Kumar, Neha Upadhyay, Nitin
Kumar, Rishi Kumar Verma, Rohit
Mishra, Durgesh Kumar Tripathi and R. G. Upadhyay, Emerging Significance
of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspective Towards
Sustainable Agriculture, Probiotics and Plant
Health, 10.1007/978-981-10-3473-2_10, (233-251),
(2017).Crossref
Yunhao
Liu, Chaitanya S. Gokhale, Paul
B. Rainey and Xue‐Xian Zhang,
Unravelling the complexity and redundancy of carbon catabolic repression in
Pseudomonas fluorescens SBW25, Molecular
Microbiology, 105, 4,
(589-605), (2017).Wiley Online Library
Ramya
Krishnan, Rahul Ravikumar Menon, Naoto Tanaka, Hans-Jürgen
Busse, Srinivasan Krishnamurthi, Natarajan Rameshkumar and Pankaj
Kumar Arora, Arthrobacter pokkalii sp nov, a Novel Plant Associated
Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali
Rice, Kerala, India, PLOS
ONE, 11, 3,
(e0150322), (2016).Crossref
Simone
Nübling, Herbert Schmidt and Agnes Weiss, Variation of the Pseudomonas
community structure on oak leaf lettuce during storage detected by culture-dependent
and -independent methods, International
Journal of Food Microbiology, 216, (95),
(2016).Crossref
Giancarlo
Renella and Laura Giagnoni,
Light dazzles from the black box: whole-cell biosensors are ready to inform
on fundamental soil biological processes, Chemical and Biological Technologies in Agriculture, 3,
1, (2016).Crossref
Jun
Li, Wei Zhen, Dengkai
Long, Ling Ding, Anhui
Gong, Chenghong Xiao, Weike
Jiang, Xiaoqing Liu, Tao
Zhou, Luqi Huang and Gao-Feng
Qiu, De Novo Sequencing and Assembly Analysis of the Pseudostellaria
heterophylla Transcriptome, PLOS
ONE, 11, 10,
(e0164235), (2016).Crossref
José
Miguel Quesada, Matilde Fernández, María Isabel Soriano, Laura
Barrientos‐Moreno, María Antonia Llamas and
Manuel Espinosa‐Urgel, Rhizosphere
selection of Pseudomonas putida KT2440 variants with increased fitness associated
to changes in gene expression, Environmental
Microbiology Reports, 8, 5,
(842-850), (2016).Wiley Online Library
Hajime
Morimoto, Ryosuke Kadoya, Kazuhiro
Takahashi and Yasuhiro Kasahara,
Proteome analysis of Pseudomonas putida F1 genes induced in soil environments, Environmental Microbiology
Reports, 8, 5,
(825-832), (2016).Wiley Online Library
Marta
Martini, Serena Moruzzi, Paolo
Ermacora, Nazia Loi and Giuseppe
Firrao, Quantitative real-time PCR and high-resolution melting
(HRM) analysis for strain-specific monitoring of fluorescent pseudomonads used as
biocontrol agents against soil-borne pathogens of food crops,
Trends in Food Science & Technology, 46,
2, (277), (2015).Crossref
Jenna
Gallie, Eric Libby, Frederic
Bertels, Philippe Remigi, Christian
B. Jendresen, Gayle C. Ferguson, Nicolas Desprat, Marieke
F. Buffing, Uwe Sauer, Hubertus
J. E. Beaumont, Jan Martinussen, Mogens Kilstrup, Paul
B. Rainey and Michael T. Laub,
Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony
Switching in Pseudomonas fluorescens, PLOS Biology, 13, 3,
(e1002109), (2015).Crossref
A
Srivastava, Soil Fertility Dynamics vis-à-vis Climate Change in
Citrus, Climate Dynamics in Horticultural Science,
Volume Two, 10.1201/b18038-12, (179-211),
(2015).Crossref
Brittan
S. Scales, John R. Erb-Downward, Ian M. Huffnagle, John
J. LiPuma and Gary B. Huffnagle,
Comparative genomics of Pseudomonas fluorescens subclade III strains from human
lungs, BMC Genomics, 16,
1, (2015).Crossref
Taoufik
Ghrairi, Olfa Ben Braiek and Khaled Hani, Detection and characterization
of a bacteriocin, putadicin T01, produced byPseudomonas putidaisolated from hot spring
water, APMIS, 123,
3, (260), (2015).Crossref
Zeynab
Khatamidoost, Salar Jamali, Mohammad Moradi and Roohollah
Saberi Riseh, Effect of Iranian strains ofPseudomonasspp. on the
control of root-knot nematodes on Pistachios, Biocontrol Science and Technology,
25, 3,
(291), (2015).Crossref
Matthew
G. Bakker, Jacqueline M. Chaparro, Daniel K. Manter and Jorge
M. Vivanco, Impacts of bulk soil microbial community structure
on rhizosphere microbiomes of Zea mays, Plant and Soil, 392, 1-2,
(115), (2015).Crossref
Peter
A Lind, Andrew D Farr and Paul
B Rainey, Experimental evolution reveals hidden diversity in evolutionary
pathways, eLife, 4,
(2015).Crossref
S.S. Boycheva, F.B. Pichler, B.D.
Heijstra, K.E.M. Lau and S.J.
Turner, The genetic toolbox for Acidovorax temperans, Journal of Microbiological
Methods, 115, (129),
(2015).Crossref
Shubham
Chakravarty and Gregory Anderson,
The Genus Pseudomonas, Practical Handbook
of Microbiology, Third Edition, 10.1201/b17871-24,
(321-344), (2015).Crossref
James
L. O. McKellar, Jordan J. Minnell and Monica L. Gerth, A high‐throughput
screen for ligand binding reveals the specificities of three amino acid chemoreceptors
from seudomonas syringae pv. actinidiae, Molecular Microbiology,
96, 4,
(694-707), (2015).Wiley Online Library
Yunhao Liu, Paul
B. Rainey and Xue‐Xian Zhang,
Molecular mechanisms of xylose utilization by seudomonas fluorescens: overlapping
genetic responses to xylose, xylulose, ribose and mannitol,
Molecular Microbiology,
98, 3,
(553-570), (2015).Wiley Online Library
Susan F. Bailey, Aaron Hinz and Rees
Kassen, Adaptive synonymous mutations in an experimentally evolved
Pseudomonas fluorescens population, Nature
Communications, 5, (2014).Crossref
C.
E. Calderon, V. J. Carrion, A. de Vicente and F.
M. Cazorla, darR and darS are regulatory genes that modulate 2-hexyl,
5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606, Microbiology, 160,
Pt_12, (2670), (2014).Crossref
Elena
Algar, F. Javier Gutierrez-Mañero, Ana Garcia-Villaraco, Daniel
García-Seco, J. Antonio Lucas and Beatriz Ramos-Solano, The role of
isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that
triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine
max (L.) Merr. cv. Osumi, Plant
Physiology and Biochemistry, 82, (9),
(2014).Crossref
Juliana
Almario, Davide Gobbin, Geneviève
Défago, Yvan Moënne-Loccoz and Fabio Rezzonico, Prevalence of type
III secretion system in effective biocontrol pseudomonads,
Research in Microbiology,
165, 4,
(300), (2014).Crossref
Abdullah
S. Alsohim, Tiffany B. Taylor, Glyn A. Barrett, Jenna
Gallie, Xue‐Xian Zhang, Astrid
E. Altamirano‐Junqueira, Louise J. Johnson,
Paul B. Rainey and Robert
W. Jackson, The biosurfactant viscosin produced by seudomonas
fluorescens SBW25 aids spreading motility and plant growth promotion,
Environmental Microbiology,
16, 7,
(2267-2281), (2014).Wiley Online Library
Brittan
S. Scales, Robert P. Dickson, John J. LiPuma and Gary
B. Huffnagle, Microbiology, Genomics, and Clinical Significance
of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans, Clinical Microbiology Reviews, 27,
4, (927), (2014).Crossref
Matthieu
Barret, Frank Egan, Jennifer
Moynihan, John P. Morrissey, Olivier Lesouhaitier and Fergal
O'Gara, Characterization of the SPI‐1 and Rsp type three secretion
systems in seudomonas fluorescens F113, Environmental Microbiology Reports,
5, 3,
(377-386), (2013).Wiley Online Library
Estrella
Duque, Jesús de la Torre, Patricia
Bernal, M. Antonia Molina‐Henares, Miguel Alaminos, Manuel
Espinosa‐Urgel, Amalia Roca, Matilde Fernández, Sophie
de Bentzmann and Juan‐Luis Ramos,
Identification of reciprocal adhesion genes in pathogenic and non‐pathogenic
Pseudomonas, Environmental
Microbiology, 15, 1,
(36-48), (2012).Wiley Online
Library
Carla Spence and Harsh
Bais, Probiotics for Plants: Rhizospheric Microbiome and Plant
Fitness, Molecular Microbial Ecology of the
Rhizosphere,
(713-721), (2013).Wiley Online Library
Sergio
Álvarez-Pérez, Clara de Vega, Carlos M. Herrera and Martin
Heil, Multilocus Sequence Analysis of Nectar Pseudomonads Reveals
High Genetic Diversity and Contrasting Recombination Patterns,
PLoS ONE, 8, 10,
(e75797), (2013).Crossref
W.
Radzki, F. J. Gutierrez Mañero, E. Algar, J.
A. Lucas García, A. García-Villaraco and
B. Ramos Solano, Bacterial
siderophores efficiently provide iron to iron-starved tomato plants in hydroponics
culture, Antonie
van Leeuwenhoek, 104, 3,
(321), (2013).Crossref
Katila
Varivarn, Lindsey A Champa, Mark W Silby and Eduardo
A Robleto, Colonization strategies of Pseudomonas fluorescens
Pf0-1: activation of soil-specific genes important for diverse and specific environments, BMC Microbiology, 10.1186/1471-2180-13-92,
13, 1,
(92), (2013).Crossref
Matthieu
Barret, Pascale Frey‐Klett, Anne‐Yvonne Guillerm‐Erckelboudt, Morgane
Boutin, Gregory Guernec, Muriel
Marchi, Stéphanie Daval and Alain Sarniguet, Combined Effects
of Wheat Roots and Pathogenic Fungus Gaeumannomyces graminis var. tritici on Gene
Expression of the Biocontrol Bacterium Pseudomonas fluorescens Pf29Arp, Molecular Microbial Ecology of the Rhizosphere, (643-653),
(2013).Wiley Online Library
Martha
G. López‐Guerrero, Miguel Á. Ramírez and
Esperanza Martínez‐Romero,
Rhizobial Genetic Repertoire to Inhabit Legume and Nonlegume Rhizospheres,
Molecular Microbial Ecology of the Rhizosphere, (495-500),
(2013).Wiley Online Library
María‐Isabel
Ramos‐González, Miguel A. Matilla, José‐Miguel Quesada, Juan
L. Ramos and Manuel Espinosa‐Urgel,
Using Genomics to Unveil Bacterial Determinants of Rhizosphere Life Style,
Molecular Microbial Ecology of the Rhizosphere, (5-16),
(2013).Wiley Online Library
A.
Lagzian, R. Saberi Riseh, P.
Khodaygan, E. Sedaghati and H. Dashti, IntroducedPseudomonas fluorescensVUPf5
as an important biocontrol agent for controllingGaeumannomyces graminisvar.triticithe
causal agent of take-all disease in wheat, Archives Of Phytopathology And Plant Protection, 46,
17, (2104), (2013).Crossref
Ana
Segura and Juan Luis Ramos,
Plant–bacteria interactions in the removal of pollutants,
Current Opinion in Biotechnology, 10.1016/j.copbio.2012.09.011, 24,
3, (467-473), (2013).Crossref
Y.
Kroupitski, M. T. Brandl, R.
Pinto, E. Belausov, D.
Tamir-Ariel, S. Burdman and S. Sela (Saldinger),
Identification of
Salmonella enterica
Genes with a Role in Persistence on Lettuce Leaves During Cold Storage by Recombinase-Based
In Vivo Expression Technology
, Phytopathology, 10.1094/PHYTO-10-12-0254-FI, 103,
4, (362-372), (2013).Crossref
Rafael
Rivilla, Francisco Martínez‐Granero and Marta Martín, Motility, Biofilm Formation,
and Rhizosphere Colonization by Pseudomonas fluorescens F113, Molecular
Microbial Ecology of the Rhizosphere, (723-732), (2013).Wiley
Online Library
Yongliang Yan, Wei
Lu, Ming Chen, Jin
Wang, Wei Zhang, Yunhua
Zhang, Shuzhen Ping, Claudine
Elmerich and Min Lin, Genome
Transcriptome Analysis and Functional Characterization of a Nitrogen‐Fixation Island
in Root‐Associated Pseudomonas stutzeri
, Molecular Microbial Ecology of the Rhizosphere, (851-863),
(2013).Wiley Online Library
Matthieu
Barret, Hao Tan, Frank
Egan, John P. Morrissey, Jerry
Reen and Fergal O'Gara, Exploiting
New Systems‐Based Strategies to Elucidate Plant–Bacterial Interactions in the Rhizosphere,
Molecular Microbial Ecology of the Rhizosphere, (57-68),
(2013).Wiley Online Library
Robert
W. Jackson, Xue‐Xian Zhang and Mark W. Silby, Identification and
Mutational Activation of Niche‐Specific Genes Provide Insight into Regulatory Networks
and Bacterial Function in Complex Environments, Molecular
Microbial Ecology of the Rhizosphere, (875-882), (2013).Wiley
Online Library
Xue‐Xian Zhang and Paul
B. Rainey, EXPLORING THE SOCIOBIOLOGY OF PYOVERDIN‐PRODUCING PSEUDOMONAS, Evolution, 67,
11, (3161-3174), (2013).Wiley Online Library
Rodrigo
Mendes, Paolina Garbeva and Jos M. Raaijmakers, The rhizosphere
microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic
microorganisms, FEMS
Microbiology Reviews, 37, 5,
(634-663), (2013).Wiley Online Library
Xu
Cheng, Irene Bruijn, Menno
Voort, Joyce E. Loper and Jos
M. Raaijmakers, The Gac regulon of seudomonas fluorescens SBW25, Environmental Microbiology
Reports, 5, 4,
(608-619), (2013).Wiley Online Library
Claudia
E. Calderón, Alejandro Pérez-García, Antonio de Vicente and Francisco
M. Cazorla, ThedarGenes ofPseudomonas chlororaphisPCL1606 Are
Crucial for Biocontrol Activity via Production of the Antifungal Compound 2-Hexyl,
5-Propyl Resorcinol, Molecular
Plant-Microbe Interactions, 26, 5,
(554), (2013).Crossref
Luke
A. Moe, Amino acids in the rhizosphere: From plants to microbes, American Journal of Botany, 100,
9, (1692-1705), (2013).Wiley Online Library
Gayle
C. Ferguson, Frederic Bertels and Paul B. Rainey,
Adaptive Divergence in Experimental Populations of
Pseudomonas fluorescens
. V. Insight into the Niche Specialist Fuzzy Spreader Compels Revision of the Model
Pseudomonas
Radiation
, Genetics, 10.1534/genetics.113.154948, 195,
4, (1319-1335), (2013).Crossref
Xue‐Xian
Zhang, Hao Chang, Sieu
L. Tran, Jonathan C. Gauntlett, Gregory M. Cook and Paul
B. Rainey, Variation in transport explains polymorphism of histidine
and urocanate utilization in a natural Pseudomonas population,
Environmental Microbiology,
14, 8,
(1941-1951), (2012).Wiley Online Library
Monica
L. Gerth, Matteo P. Ferla and Paul B. Rainey, The origin and ecological
significance of multiple branches for histidine utilization in Pseudomonas aeruginosa
PAO1, Environmental
Microbiology, 14, 8,
(1929-1940), (2012).Wiley Online
Library
Susan F. Bailey and Rees
Kassen, Spatial Structure of Ecological Opportunity Drives Adaptation
in a Bacterium, The
American Naturalist, 180, 2,
(270), (2012).Crossref
Christos
Zamioudis and Corné M. J. Pieterse,
Modulation of Host Immunity by Beneficial Microbes,
Molecular Plant-Microbe Interactions, 25,
2, (139), (2012).Crossref
Sandrine
Ghirardi, Fabrice Dessaint, Sylvie Mazurier, Thérèse
Corberand, Jos M. Raaijmakers, Jean-Marie Meyer, Yves
Dessaux and Philippe Lemanceau,
Identification of Traits Shared by Rhizosphere-Competent Strains of Fluorescent
Pseudomonads, Microbial
Ecology, 64, 3,
(725), (2012).Crossref
Monica
L. Gerth, Laura V. Nigon and Wayne M. Patrick, Characterization
of the indole-3-glycerol phosphate synthase from Pseudomonas aeruginosa PAO1, The Protein Journal, 31,
5, (359), (2012).Crossref
Joyce
E. Loper, Karl A. Hassan, Dmitri
V. Mavrodi, Edward W. Davis, Chee Kent Lim, Brenda
T. Shaffer, Liam D. H. Elbourne, Virginia O. Stockwell, Sierra
L. Hartney, Katy Breakwell, Marcella D. Henkels, Sasha
G. Tetu, Lorena I. Rangel, Teresa
A. Kidarsa, Neil L. Wilson, Judith E. van de Mortel, Chunxu
Song, Rachel Blumhagen, Diana
Radune, Jessica B. Hostetler, Lauren M. Brinkac, A.
Scott Durkin, Daniel A. Kluepfel, W. Patrick Wechter, Anne
J. Anderson, Young Cheol Kim, Leland S. Pierson, Elizabeth
A. Pierson, Steven E. Lindow, Donald Y. Kobayashi, Jos
M. Raaijmakers, David M. Weller, Linda S. Thomashow, Andrew
E. Allen, Ian T. Paulsen and David S. Guttman, Comparative Genomics
of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits
Involved in Multitrophic Interactions, PLoS Genetics, 8, 7,
(e1002784), (2012).Crossref
Eri
Nishiyama, Yoshiyuki Ohtsubo, Yasuhiro Yamamoto, Yuji
Nagata and Masataka Tsuda,
Pivotal role of anthranilate dioxygenase genes in the adaptation of urkholderia
multivorans ATCC 17616 in soil, FEMS
Microbiology Letters, 330, 1,
(46-55), (2012).Wiley Online
Library
Fabiola G. Zuno-Floriano, Marion
G. Miller, Maria L. Aldana-Madrid, Matt J. Hengel, Nilesh
W. Gaikwad, Vladimir Tolstikov, Ana G. Contreras-Cortés and Gustavo
Bonaventure, Effect of Acinetobacter sp on Metalaxyl Degradation
and Metabolite Profile of Potato Seedlings (Solanum tuberosum L.) Alpha Variety, PLoS ONE,
7, 2,
(e31221), (2012).Crossref
Venant
Nihorimbere, Hélène Cawoy, Alexandre
Seyer, Alain Brunelle, Philippe
Thonart and Marc Ongena, Impact
of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain
acillus amyloliquefaciens S499, FEMS
Microbiology Ecology, 79, 1,
(176-191), (2011).Wiley Online
Library
Anita H. Melnyk and Rees
Kassen, ADAPTIVE LANDSCAPES IN EVOLVING POPULATIONS OF PSEUDOMONAS
FLUORESCENS, Evolution, 65,
11, (3048-3059), (2011).Wiley Online
Library
Arif
Tasleem Jan, Mudsser Azam, Arif
Ali and Qazi Mohd. Rizwanul Haq,
Novel approaches of beneficial
Pseudomonas
in mitigation of plant diseases – an appraisal
, Journal of Plant
Interactions, 10.1080/17429145.2010.541944, 6,
4, (195-205), (2011).Crossref
Lisa
Gorski, Jessica M. Duhé and Denise Flaherty, The Sigma B Operon
Is a Determinant of Fitness for aListeria monocytogenesSerotype 4b Strain in Soil, Foodborne Pathogens and Disease, 8,
6, (699), (2011).Crossref
Daniel
P. Roberts, Scott M. Lohrke, Laurie McKenna, Dilip
K. Lakshman, Hyesuk Kong and John Lydon, Mutation of adegSHomologue
inEnterobacter cloacaeDecreases Colonization and Biological Control of Damping-Off
on Cucumber, Phytopathology, 101,
2, (271), (2011).Crossref
Matthieu
Barret, John P. Morrissey and Fergal O’Gara, Functional genomics
analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence, Biology and Fertility of Soils, 47,
7, (729), (2011).Crossref
DAFNA
TAMIR‐ARIEL, TALLY ROSENBERG and SAUL BURDMAN, The Xanthomonas campestris
pv. vesicatoria citH gene is expressed early in the infection process of tomato and
is positively regulated by the TctDE two‐component regulatory system,
Molecular Plant Pathology,
12, 1,
(57-71), (2010).Wiley Online Library
Mark
W. Silby, Craig Winstanley, Scott A.C. Godfrey, Stuart
B. Levy and Robert W. Jackson,
Pseudomonas genomes: diverse and adaptable, FEMS Microbiology Reviews,
35, 4,
(652-680), (2011).Wiley Online Library
Xue‐Xian
Zhang, Yun‐Hao Liu and Paul
B. Rainey, CbrAB‐dependent regulation of pcnB, a poly(A) polymerase
gene involved in polyadenylation of RNA in Pseudomonas fluorescens,
Environmental Microbiology,
12, 6,
(1674-1683), (2010).Wiley Online Library
Eri
Nishiyama, Yoshiyuki Ohtsubo, Yuji Nagata and Masataka
Tsuda, Identification of Burkholderia multivorans ATCC 17616 genes
induced in soil environment by in vivo expression technology,
Environmental Microbiology,
12, 9,
(2539-2558), (2010).Wiley Online Library
C.
G. Knight, X. X. Zhang, A.
Gunn, T. Brenner, R.
W. Jackson, S. R. Giddens, S.
Prabhakar, N. Zitzmann and P.
B. Rainey, Testing temperature‐induced proteomic changes in the
plant‐associated bacterium Pseudomonas fluorescens SBW25,
Environmental Microbiology Reports, 2,
3, (396-402), (2009).Wiley Online
Library
Jennifer Colburn-Clifford and Caitilyn
Allen, Acbb3-Type CytochromeCOxidase Contributes toRalstonia solanacearumR3bv2
Growth in Microaerobic Environments and to Bacterial Wilt Disease Development in Tomato, Molecular Plant-Microbe Interactions, 23,
8, (1042), (2010).Crossref
N.
Weyens, S. Monchy, J.
Vangronsveld, S. Taghavi and D. van der Lelie, Plant-Microbe Partnerships,
Handbook of Hydrocarbon and Lipid Microbiology, 10.1007/978-3-540-77587-4_189, (2545-2574),
(2010).Crossref
Venant
Nihorimbere, Patrick Fickers, Philippe Thonart and Marc
Ongena, Ecological fitness of Bacillus subtilis BGS3 regarding
production of the surfactin lipopeptide in the rhizosphere,
Environmental Microbiology Reports, 1,
2, (124-130), (2009).Wiley Online
Library
Deepti Dwivedi, Bhavdish
N. Johri, Kurt Ineichen, Victor
Wray and Andres Wiemken, Impact
of antifungals producing rhizobacteria on the performance of Vigna radiata in the
presence of arbuscular mycorrhizal fungi, Mycorrhiza, 19, 8,
(559), (2009).Crossref
Matthieu
Barret, Pascale Frey-Klett, Anne-Yvonne Guillerm-Erckelboudt, Morgane
Boutin, Gregory Guernec and Alain Sarniguet, Effect of Wheat Roots
Infected with the Pathogenic FungusGaeumannomyces graminisvar.triticion Gene Expression
of the Biocontrol BacteriumPseudomonas fluorescensPf29Arp,
Molecular Plant-Microbe Interactions, 22,
12, (1611), (2009).Crossref
Karen
E. Gerhardt, Xiao-Dong Huang, Bernard R. Glick and Bruce
M. Greenberg, Phytoremediation and rhizoremediation of organic
soil contaminants: Potential and challenges, Plant Science, 176, 1,
(20), (2009).Crossref
Andrew
J. M. Howden, C. Jill Harrison and Gail M. Preston, A conserved mechanism
for nitrile metabolism in bacteria and plants, The Plant Journal, 57, 2,
(243-253), (2008).Wiley Online Library
Ana
Segura, Sara Rodríguez‐Conde, Cayo Ramos and Juan
L. Ramos, Bacterial responses and interactions with plants during
rhizoremediation, Microbial
Biotechnology, 2, 4,
(452-464), (2009).Wiley Online
Library
M. Barret, P.
Frey‐Klett, M. Boutin, A.‐Y.
Guillerm‐Erckelboudt, F. Martin, L. Guillot and A.
Sarniguet, The plant pathogenic fungus Gaeumannomyces graminis
var. tritici improves bacterial growth and triggers early gene regulations in the
biocontrol strain Pseudomonas fluorescens Pf29Arp,
New Phytologist,
181, 2,
(435-447), (2008).Wiley Online Library
Jan
Sørensen, Mette Haubjerg Nicolaisen, Eliora Ron and Pascal
Simonet, Molecular tools in rhizosphere microbiology—from single-cell
to whole-community analysis, Plant
and Soil, 10.1007/s11104-009-9946-8, 321,
1-2, (483-512), (2009).Crossref
Mika
T. Tarkka, Alain Sarniguet and Pascale Frey-Klett, Inter-kingdom
encounters: recent advances in molecular bacterium–fungus interactions, Current Genetics, 10.1007/s00294-009-0241-2, 55,
3, (233-243), (2009).Crossref
Michael
J. McDonald, Stefanie M. Gehrig, Peter L. Meintjes, Xue-Xian
Zhang and Paul B. Rainey,
Adaptive Divergence in Experimental Populations of
Pseudomonas fluorescens
. IV. Genetic Constraints Guide Evolutionary Trajectories in a Parallel Adaptive Radiation
, Genetics, 10.1534/genetics.109.107110, 183,
3, (1041-1053), (2009).Crossref
Michelle
Barr, Alison K. East, Mary
Leonard, Tim H. Mauchline and Philip S. Poole, In vivo expression
technology (IVET) selection of genes of Rhizobium leguminosarum biovar viciae A34
expressed in the rhizosphere, FEMS
Microbiology Letters, 282, 2,
(219-227), (2008).Wiley Online
Library
Xue‐Xian Zhang and Paul
B. Rainey, Regulation of copper homeostasis in Pseudomonas fluorescens
SBW25, Environmental
Microbiology, 10, 12,
(3284-3294), (2008).Wiley Online
Library
LISA GORSKI, DENISE
FLAHERTY and JESSICA M. DUHÉ,
Comparison of the Stress Response of Listeria monocytogenes Strains with Sprout
Colonization, Journal
of Food Protection, 71, 8,
(1556), (2008).Crossref
Marc
Ongena and Philippe Jacques,
Bacillus lipopeptides: versatile weapons for plant disease biocontrol, Trends in Microbiology, 16,
3, (115), (2008).Crossref
J.
Barriuso, B. Ramos Solano and F. J. Gutiérrez Mañero, Protection
Against Pathogen and Salt Stress by Four Plant Growth-Promoting Rhizobacteria Isolated
fromPinussp. onArabidopsis thaliana, Phytopathology, 98,
6, (666), (2008).Crossref
Jorge
Barriuso, Beatriz Ramos Solano, Rupert G. Fray, Miguel
Cámara, Anton Hartmann and F.
Javier Gutiérrez Mañero, Transgenic tomato plants alter quorum
sensing in plant growth‐promoting rhizobacteria, Plant Biotechnology Journal,
6, 5,
(442-452), (2008).Wiley Online Library
Robert
P. Ryan, Kieran Germaine, Ashley
Franks, David J. Ryan and David
N. Dowling, Bacterial endophytes: recent developments and applications, FEMS Microbiology Letters, 278,
1, (1-9), (2007).Wiley Online
Library
J. Barriuso, B.
Ramos Solano, C. Santamaría, A. Daza and F.J.
Gutiérrez Mañero, Effect of inoculation with putative plant growth‐promoting
rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere
microbial communities, Journal
of Applied Microbiology, 105, 5,
(1298-1309), (2008).Wiley Online
Library
Lotta Jäderlund, Maria
Hellman, Ingvar Sundh, Mark
J. Bailey and Janet K. Jansson,
Use of a novel nonantibiotic triple marker gene cassette to monitor high survival
of Pseudomonas fluorescens SBW25 on winter wheat in the field,
FEMS Microbiology Ecology,
63, 2,
(156-168), (2007).Wiley Online Library
Dilfuza
Egamberdiyeva and Khandakar R. Islam,
Salt‐Tolerant Rhizobacteria: Plant Growth Promoting Traits and Physiological
Characterization Within Ecologically Stressed Environments, Plant‐Bacteria
Interactions,
(257-281), (2008).Wiley Online Library
Christina
D. Moon, Stephen R. Giddens, Xue‐Xian Zhang and Robert
W. Jackson, Molecular Mechanisms Underpinning Colonization of
a Plant by Plant Growth‐Promoting Rhizobacteria, Plant‐Bacteria
Interactions,
(111-128), (2008).Wiley Online Library
S.
H. Miller, G. L. Mark, A.
Franks and F. O'Gara, Pseudomonas–Plant
Interactions, Pseudomonas, (353-376),
(2008).Wiley Online Library
Marc
Ongena, Emmanuel Jourdan, Akram
Adam, Mathias Schäfer, Herbert
Budzikiewicz and Philippe Thonart,
Amino Acids, Iron, and Growth Rate as Key Factors Influencing Production of
the Pseudomonas Putida BTP1 Benzylamine Derivative Involved in Systemic Resistance
Induction in Different Plants, Microbial
Ecology, 10.1007/s00248-007-9275-5, 55,
2, (280-292), (2007).Crossref
Arvind
Gulati, Praveen Rahi and Pratibha
Vyas, Characterization of Phosphate-Solubilizing Fluorescent Pseudomonads
from the Rhizosphere of Seabuckthorn Growing in the Cold Deserts of Himalayas, Current Microbiology, 10.1007/s00284-007-9042-3, 56,
1, (73-79), (2007).Crossref
Velmurugan
Ganesan, Rhizoremediation of Cadmium Soil Using a Cadmium-Resistant
Plant Growth-Promoting Rhizopseudomonad, Current Microbiology, 10.1007/s00284-008-9099-7, 56, 4,
(403-407), (2008).Crossref
Xue-Xian
Zhang and Paul B. Rainey,
Dual Involvement of CbrAB and NtrBC in the Regulation of Histidine Utilization in
Pseudomonas fluorescens
SBW25
, Genetics, 10.1534/genetics.107.081984, 178,
1, (185-195), (2008).Crossref
S.‐J.
Ahn, C.‐H. Yang and D.A.
Cooksey, Pseudomonas putida 06909 genes expressed during colonization
on mycelial surfaces and phenotypic characterization of mutants,
Journal of Applied Microbiology, 103,
1, (120-132), (2006).Wiley Online
Library
Ligang Wang, Xin
Jiang, Dongyun Yan, Jinshui
Wu, Yongrong Bian and Fang
Wang, Behavior and fate of chlorpyrifos introduced into soil–crop
systems by irrigation, Chemosphere, 66,
3, (391), (2007).Crossref
S.
R. Giddens, R. W. Jackson, C.
D. Moon, M. A. Jacobs, X.-X.
Zhang, S. M. Gehrig and P.
B. Rainey, Mutational activation of niche-specific genes provides
insight into regulatory networks and bacterial function in a complex environment, Proceedings of the National
Academy of Sciences, 104, 46,
(18247), (2007).Crossref
Ben
Lugtenberg and Johan Leveau,
Biocontrol of Plant Pathogens, The Rhizosphere, 10.1201/9781420005585.ch10, (267-296),
(2009).Crossref
Xue-Xian
Zhang and Paul B. Rainey, The
Role of a P1-Type ATPase fromPseudomonas fluorescensSBW25 in Copper Homeostasis and
Plant Colonization, Molecular
Plant-Microbe Interactions, 20, 5,
(581), (2007).Crossref
Daniel
P. Roberts, Laurie F. McKenna, Scott M. Lohrke, Stephen
Rehner and Jorge T. de Souza,
Pyruvate dehydrogenase activity is important for colonization of seeds and roots
by Enterobacter cloacae, Soil
Biology and Biochemistry, 39, 8,
(2150), (2007).Crossref
Christine
V. Hawkes, Kristen M. DeAngelis and Mary K. Firestone, Root Interactions
with Soil Microbial Communities and Processes, The
Rhizosphere, 10.1016/B978-012088775-0/50003-3, (1-29),
(2007).Crossref
Xue-Xian
Zhang and Paul B. Rainey, Construction
and validation of a neutrally-marked strain of Pseudomonas fluorescens SBW25, Journal of Microbiological
Methods, 71, 1,
(78), (2007).Crossref
Louise
A. O'Sullivan, Andrew J. Weightman, T. Hefin Jones, Angela
M. Marchbank, James M. Tiedje and Eshwar Mahenthiralingam, Identifying
the genetic basis of ecologically and biotechnologically useful functions of the bacterium
Burkholderia vietnamiensis, Environmental
Microbiology, 9, 4,
(1017-1034), (2007).Wiley Online
Library
Jacob Jones, David
J. Studholme, Christopher G. Knight and Gail M. Preston, Integrated bioinformatic
and phenotypic analysis of RpoN‐dependent traits in the plant growth‐promoting bacterium
Pseudomonas fluorescens SBW25, Environmental
Microbiology, 9, 12,
(3046-3064), (2007).Wiley Online
Library
Daniel
P. Roberts, Laurie F. McKenna, Xiaojia Hu, Scott
M. Lohrke, Hye Suk Kong, Jorge
T. de Souza, C. Jacyn Baker and John Lydon, Mutation in cyaA in Enterobacter
cloacae decreases cucumber root colonization, Archives of Microbiology,
10.1007/s00203-006-0177-6,
187, 2,
(101-115), (2006).Crossref
Wei
E. Huang, Mark J. Bailey, Ian
P. Thompson, Andrew S. Whiteley and Andrew J. Spiers, Single-Cell Raman
Spectral Profiles of Pseudomonas fluorescens SBW25 Reflects in vitro and in planta
Metabolic History, Microbial
Ecology, 10.1007/s00248-006-9138-5, 53,
3, (414-425), (2007).Crossref
Tadashi
Fukami, Hubertus J. E. Beaumont, Xue-Xian Zhang and Paul
B. Rainey, Immigration history controls diversification in experimental
adaptive radiation, Nature, 10.1038/nature05629,
446, 7134, (436-439),
(2007).Crossref
Susanne
Ude, Mark J. Bailey, Wei
E. Huang and Andrew J. Spiers,
The Environmental Plasmid pQBR103 Alters the Single-Cell Raman Spectral Profile
of Pseudomonas fluorescens SBW25, Microbial
Ecology, 10.1007/s00248-006-9191-0, 53,
3, (494-497), (2007).Crossref
B.
Ramos Solano, M. T. Pereyra de la Iglesia,
A. Probanza, J.
A. Lucas García, M. Megías and F. J. Gutierrez Mañero, Screening
for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded
mediterranean ecosystems, First International
Meeting on Microbial Phosphate Solubilization,
10.1007/978-1-4020-5765-6_7,
(59-68), (2007).Crossref
Jesús
Mercado-Blanco and Peter A. H. M. Bakker,
Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial
traits for crop protection, Antonie
van Leeuwenhoek, 10.1007/s10482-007-9167-1, 92,
4, (367-389), (2007).Crossref
Adrian
Tett, Andrew J Spiers, Lisa
C Crossman, Duane Ager, Lena
Ciric, J Maxwell Dow, John
C Fry, David Harris, Andrew
Lilley, Anna Oliver, Julian
Parkhill, Michael A Quail, Paul
B Rainey, Nigel J Saunders, Kathy Seeger, Lori
A S Snyder, Rob Squares, Christopher
M Thomas, Sarah L Turner, Xue-Xian
Zhang, Dawn Field and Mark
J Bailey, Sequence-based analysis of pQBR103; a representative
of a unique, transfer-proficient mega plasmid resident in the microbial community
of sugar beet, The
ISME Journal, 10.1038/ismej.2007.47, 1,
4, (331-340), (2007).Crossref
Xue-Xian
Zhang and Paul B. Rainey,
Genetic Analysis of the Histidine Utilization (
hut
) Genes in
Pseudomonas fluorescens
SBW25
, Genetics, 10.1534/genetics.107.075713, 176,
4, (2165-2176), (2007).Crossref
Eleni
Bantinaki, Rees Kassen, Christopher
G. Knight, Zena Robinson, Andrew
J. Spiers and Paul B. Rainey,
Adaptive Divergence in Experimental Populations of
Pseudomonas fluorescens
. III. Mutational Origins of Wrinkly Spreader Diversity
, Genetics, 10.1534/genetics.106.069906, 176,
1, (441-453), (2007).Crossref
Rowan
D. H. Barrett and Graham Bell,
THE DYNAMICS OF DIVERSIFICATION IN EVOLVING PSEUDOMONAS POPULATIONS, Evolution, 60,
3, (484-490), (2007).Wiley
Online Library
S. Tarnawski, J.
Hamelin, M. Jossi, M.
Aragno and N. Fromin, Phenotypic
structure of Pseudomonas populations is altered under elevated pCO2 in the rhizosphere
of perennial grasses, Soil
Biology and Biochemistry, 38, 6,
(1193), (2006).Crossref
P.
D. Kiely, J. M. Haynes, C.
H. Higgins, A. Franks, G.
L. Mark, J. P. Morrissey and F. O'Gara, Exploiting New Systems-Based
Strategies to Elucidate Plant-Bacterial Interactions in the Rhizosphere, Microbial Ecology, 10.1007/s00248-006-9019-y, 51,
3, (257-266), (2006).Crossref
P.
R. Darrah, D. L. Jones, G.
J. D. Kirk and T. Roose, Modelling
the rhizosphere: a review of methods for ‘upscaling’ to the whole‐plant scale, European Journal of Soil Science, 57,
1, (13-25), (2006).Wiley Online
Library
Genevieve
L. Mark, John P. Morrissey, P. Higgins and Fergal
O'Gara, Molecular‐based strategies to exploit Pseudomonas biocontrol
strains for environmental biotechnology applications,
FEMS Microbiology Ecology,
56, 2,
(167-177), (2006).Wiley Online Library
María
Antonia Molina, Juan‐Luis Ramos and Manuel Espinosa‐Urgel, A two‐partner
secretion system is involved in seed and root colonization and iron uptake by Pseudomonas
putida KT2440, Environmental
Microbiology, 8, 4,
(639-647), (2005).Wiley Online
Library
Rowan
D. H. Barrett and Graham Bell,
THE DYNAMICS OF DIVERSIFICATION IN EVOLVING PSEUDOMONAS POPULATIONS, Evolution, 10.1554/05-673.1,
60, 3,
(484), (2006).Crossref
Ramos
Solano B., M. T. Pereyra de la Iglesia, A. Probanza, J.
A. Lucas García, M. Megías and F. J. Gutierrez Mañero, Screening
for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded
mediterranean ecosystems, Plant
and Soil, 10.1007/s11104-006-9055-x, 287,
1-2, (59-68), (2006).Crossref
Jan
Sørensen and Ole Nybroe, Reporter
Genes in Bacterial Inoculants Can Monitor Life Conditions and Functions in Soil,
Nucleic Acids and Proteins in Soil, 10.1007/3-540-29449-X_16, (375-395),
(2006).Crossref
Patrick
Goymer, Sophie G. Kahn, Jacob
G. Malone, Stefanie M. Gehrig, Andrew J. Spiers and Paul
B. Rainey,
Adaptive Divergence in Experimental Populations of
Pseudomonas fluorescens
. II. Role of the GGDEF Regulator WspR in Evolution and Development of the Wrinkly
Spreader Phenotype
, Genetics, 10.1534/genetics.106.055863, 173,
2, (515-526), (2006).Crossref
Mark
J. Pallen, Scott A. Beatson and Christopher M. Bailey, Bioinformatics,
genomics and evolution of non‐flagellar type‐III secretion systems: a Darwinian perpective⋆, FEMS Microbiology Reviews, 29,
2, (201-229), (2008).Wiley Online
Library
Lisa
Gorski, Maria Brandl and Robert
Mandrell, Attachment of Microorganisms to Fresh Produce,
Microbiology of Fruits and Vegetables, 10.1201/9781420038934.ch2, (33-73),
(2010).Crossref
G.
L. Mark, J. M. Dow, P.
D. Kiely, H. Higgins, J.
Haynes, C. Baysse, A.
Abbas, T. Foley, A.
Franks, J. Morrissey and F.
O'Gara, Transcriptome profiling of bacterial responses to root
exudates identifies genes involved in microbe-plant interactions,
Proceedings of the National Academy of Sciences, 102,
48, (17454), (2005).Crossref
Fabio
Rezzonico, Christian Binder, Geneviève Défago and Yvan
Moënne-Loccoz, The Type III Secretion System of BiocontrolPseudomonas
fluorescensKD Targets the Phytopathogenic ChromistaPythium ultimumand Promotes Cucumber
Protection, Molecular
Plant-Microbe Interactions, 18, 9,
(991), (2005).Crossref
Joan
G. Ehrenfeld, Beth Ravit and Kenneth Elgersma, FEEDBACK IN THE
PLANT-SOIL SYSTEM, Annual
Review of Environment and Resources, 30, 1,
(75), (2005).Crossref
Elisa
Gamalero, Guido Lingua, Riccardo
Tombolini, Lorena Avidano, Barbara
Pivato and Graziella Berta,
Colonization of Tomato Root Seedling by Pseudomonas fluorescens 92rkG5: Spatio–temporal
Dynamics, Localization, Organization, Viability, and Culturability,
Microbial Ecology,
50, 2,
(289), (2005).Crossref
Rowan D. H.
Barrett, R. Craig MacLean and Graham Bell, Experimental Evolution
ofPseudomonas fluorescensin Simple and Complex Environments,
The American Naturalist,
166, 4,
(470), (2005).Crossref
Maria L. Marco, Jennifer Legac and Steven
E. Lindow, Pseudomonas syringae genes induced during colonization
of leaf surfaces, Environmental
Microbiology, 7, 9,
(1379-1391), (2005).Wiley Online
Library
J.
Barriuso, M. T. Pereyra, J.
A. Lucas García, M. Megías, F. J. Gutierrez Mañero and B.
Ramos, Screening for Putative PGPR to Improve Establishment of
the Symbiosis Lactarius deliciosus-Pinus sp., Microbial Ecology, 10.1007/s00248-004-0112-9, 50, 1,
(82-89), (2005).Crossref
Alfred
Pühler, Matthieu Arlat, Anke
Becker, Michael Göttfert, John
P Morrissey and Fergal O’Gara,
What can bacterial genome research teach us about bacteria–plant interactions?, Current Opinion in Plant Biology, 7,
2, (137), (2004).Crossref
E.
Somers, J. Vanderleyden and M. Srinivasan, Rhizosphere Bacterial
Signalling: A Love Parade Beneath Our Feet, Critical Reviews in Microbiology,
30, 4,
(205), (2004).Crossref
Shihui
Yang, Nicole T. Perna, Donald
A. Cooksey, Yasushi Okinaka, Steven E. Lindow, A.
Mark Ibekwe, Noel T. Keen and Ching-Hong Yang, Genome-Wide Identification
of Plant-Upregulated Genes ofErwinia chrysanthemi3937 Using a GFP-Based IVET Leaf
Array, Molecular
Plant-Microbe Interactions, 17, 9,
(999), (2004).Crossref
Manuel
Espinosa-Urgel, Plant-associated Pseudomonas populations: molecular
biology, DNA dynamics, and gene transfer, Plasmid, 52, 3,
(139), (2004).Crossref
Xue‐Xian
Zhang, Andrew K. Lilley, Mark
J. Bailey and Paul B. Rainey,
The indigenous Pseudomonas plasmid pQBR103 encodes plant‐inducible genes, including
three putative helicases, FEMS
Microbiology Ecology, 51, 1,
(9-17), (2006).Wiley Online
Library
Elisa Gamalero, Guido
Lingua, Flavia Giusy Caprì, Anna Fusconi, Graziella
Berta and Philippe Lemanceau,
Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI
characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning
electron microscopy, FEMS
Microbiology Ecology, 48, 1,
(79-87), (2006).Wiley Online
Library
Darby G. Brown and Caitilyn
Allen, Ralstonia solanacearum genes induced during growth in tomato:
an inside view of bacterial wilt, Molecular
Microbiology, 53, 6,
(1641-1660), (2004).Wiley Online
Library
Gail
M. Preston,
Plant perceptions of plant growth-promoting
Pseudomonas
, Philosophical
Transactions of the Royal Society of London. Series B: Biological Sciences, 10.1098/rstb.2003.1384,
359, 1446, (907-918),
(2004).Crossref
Micaela
Gal, Gail M. Preston, Ruth
C. Massey, Andrew J. Spiers and Paul B. Rainey, Genes encoding a cellulosic
polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25
on plant surfaces, Molecular
Ecology, 12, 11,
(3109-3121), (2003).Wiley Online
Library
Dawn L. Arnold, Andrew
Pitman and Robert W. Jackson,
Pathogenicity and other genomic islands in plant pathogenic bacteria, Molecular Plant Pathology, 4,
5, (407-420), (2003).Wiley Online
Library
Pablo Vinuesa, Frauke
Neumann-Silkow, Cristina Pacios-Bras, Herman P. Spaink, Esperanza
Martínez-Romero and Dietrich Werner,
Genetic Analysis of a pH-Regulated Operon fromRhizobium tropiciCIAT899 Involved
in Acid Tolerance and Nodulation Competitiveness, Molecular Plant-Microbe Interactions,
16, 2,
(159), (2003).Crossref
F.
PERSELLO‐CARTIEAUX, L. NUSSAUME and C. ROBAGLIA, Tales from the underground:
molecular plant–rhizobacteria interactions, Plant, Cell & Environment,
26, 2,
(189-199), (2003).Wiley Online Library
Donald
A. Phillips, Howard Ferris, Douglas R. Cook and Donald
R. Strong, MOLECULAR CONTROL POINTS IN RHIZOSPHERE FOOD WEBS, Ecology,
84, 4,
(816-826), (2003).Wiley Online
Library
Lucie Miché, Shimshon
Belkin, Rachel Rozen and Jacques
Balandreau, Rice seedling whole exudates and extracted alkylresorcinols
induce stress‐response in Escherichia coli biosensors,
Environmental Microbiology,
5, 5,
(403-411), (2003).Wiley Online Library
Gregor
Reid, M. E. Sanders, H.
Rex Gaskins, Glenn R. Gibson, Annick Mercenier, Robert
Rastall, Marcel Roberfroid, Ian Rowland, Christine
Cherbut and Todd R. Klaenhammer,
New Scientific Paradigms for Probiotics and Prebiotics,
Journal of Clinical Gastroenterology, 37,
2, (105), (2003).Crossref
Bhavdish
N. Johri, A. Sharma and J.
S. Virdi, Rhizobacterial Diversity in India and Its Influence
on Soil and Plant Health, Biotechnology in
India I, 10.1007/3-540-36488-9_2, (49-89),
(2003).Crossref
Jan
Dirk Elsas and Mark J. Bailey,
The ecology of transfer of mobile genetic elements,
FEMS Microbiology Ecology,
42, 2,
(187-197), (2006).Wiley Online Library
S.L.
Turner, M.J. Bailey, A.K.
Lilley and C.M. Thomas, Ecological
and molecular maintenance strategies of mobile genetic elements,
FEMS Microbiology Ecology,
42, 2,
(177-185), (2006).Wiley Online Library
Isabelle
Hautefort and Jay C.D. Hinton,
4 Molecular methods for monitoring bacterial gene expression during infection,
Molecular Cellular Microbiology, 10.1016/S0580-9517(02)31005-5, (55-91),
(2002).Crossref
Seon-Woo
Lee, In Vivo Expression Technology (IVET) and Its Application
in Plant-Associated Bacteria, The
Plant Pathology Journal, 10.5423/PPJ.2002.18.2.057, 18,
2, (57-62), (2002).Crossref
G
Carrillo-Castañeda, J Juárez Muños, J.R Peralta-Videa, E
Gomez, K.J Tiemannb, M
Duarte-Gardea and J.L Gardea-Torresdey,
Alfalfa growth promotion by bacteria grown under iron limiting conditions, Advances in Environmental
Research, 6, 3,
(391), (2002).Crossref
Jens
Boch, Vinita Joardar, Lisa
Gao, Tara L. Robertson, Melisa
Lim and Barbara N. Kunkel,
Identification of Pseudomonas syringae pv. tomato genes induced
during infection of Arabidopsis thaliana, Molecular Microbiology,
44, 1,
(73-88), (2002).Wiley Online Library
David
J. Hodgson, Paul B. Rainey and Angus Buckling, Mechanisms linking
diversity, productivity and invasibility in experimental bacterial communities, Proceedings of the Royal Society
of London. Series B: Biological Sciences, 10.1098/rspb.2002.2146, 269, 1506,
(2277-2283), (2002).Crossref
David
Allaway, Neil A. Schofield, Mary E. Leonard, Liliana
Gilardoni, Turlough M. Finan and Philip S. Poole, Use of differential
fluorescence induction and optical trapping to isolate environmentally induced genes, Environmental Microbiology, 3,
6, (397-406), (2001).Wiley Online
Library
H.
Antoun and J. Kloepper, Plant
Growth Promoting Rhizobacteria (PGPR), Encyclopedia
of Genetics, 10.1006/rwgn.2001.1636, (1477-1480),
(2001).Crossref
E.
Benizri, E. Baudoin and A.
Guckert, Root Colonization by Inoculated Plant Growth-Promoting
Rhizobacteria, Biocontrol
Science and Technology, 11, 5,
(557), (2001).Crossref
Adrian
J Tett, Thomas R Turner and Philip S Poole, Genomics and the Rhizosphere,
eLS, (2012).Wiley Online Library
Ben
J. J. Lugtenberg, Linda Dekkers and Guido V. Bloemberg, MOLECULARDETERMINANTS
OFRHIZOSPHERECOLONIZATION BYPSEUDOMONAS, Annual Review of Phytopathology,
39, 1,
(461), (2001).Crossref
Arthur
H.F Hosie and Philip S Poole,
Bacterial ABC transporters of amino acids, Research in Microbiology,
152, 3-4, (259),
(2001).Crossref
Guido
V Bloemberg and Ben J.J Lugtenberg,
Molecular basis of plant growth promotion and biocontrol by rhizobacteria, Current Opinion in Plant Biology, 4,
4, (343), (2001).Crossref
Ultan
F Walsh, John P Morrissey and Fergal O'Gara, Pseudomonas for biocontrol
of phytopathogens: from functional genomics to commercial exploitation, Current Opinion in Biotechnology, 12,
3, (289), (2001).Crossref
Ezékiel
Baudoin, Emile Benizri and Armand
Guckert, Metabolic fingerprint of microbial communities from distinct
maize rhizosphere compartments, European
Journal of Soil Biology, 37, 2,
(85), (2001).Crossref
Heike
Schmidt‐Eisenlohr, Michael Rittig, Susanne Preithner and Christian
Baron, Biomonitoring of pJP4‐carrying Pseudomonas chlororaphis
with Trb protein‐specific antisera, Environmental
Microbiology, 3, 11,
(720-730), (2002).Wiley Online
Library
Laurent Noël, Frank
Thieme, Dirk Nennstiel and Ulla
Bonas, cDNA‐AFLP analysis unravels a genome‐wide hrpG‐regulon
in the plant pathogen Xanthomonas campestris pv. vesicatoria,
Molecular Microbiology,
41, 6,
(1271-1281), (2008).Wiley Online Library
Gail
M. Preston, Nicolas Bertrand and Paul B. Rainey, Type III secretion
in plant growth‐promoting Pseudomonas fluorescens SBW25,
Molecular Microbiology,
41, 5,
(999-1014), (2008).Wiley Online Library
Katarina
Björklöf and Kirsten S. Jørgensen,
Applicability of non‐antibiotic resistance marker genes in ecological studies
of introduced bacteria in forest soil, FEMS Microbiology Ecology,
38, 2‐3, (179-188),
(2006).Wiley Online Library
Gail
M. Preston, Pseudomonas syringae pv. tomato: the right pathogen,
of the right plant, at the right time, Molecular Plant Pathology,
1, 5,
(263-275), (2001).Wiley Online Library
Michael
J. Mahan, Douglas M. Heithoff, Robert L. Sinsheimer and David
A. Low, Assesment of Bacterial Pathogenesis by Analysis of Gene
Expression in the Host, Annual
Review of Genetics, 10.1146/annurev.genet.34.1.139, 34,
1, (139-164), (2000).Crossref
J.
Allan Downie, Siri Ram Chhabra, Andrea Hardman, Yan
Jiang, Gordon S. A. B. Stewart, Bridget E. Laue, Paul
Williams, Fergal O’Gara and Sinead Jacob, The biocontrol strain
Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine
lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase, Microbiology, 146,
10, (2469), (2000).Crossref
T.M.
Timms-Wilson, R.J. Ellis and M.J. Bailey, Immuno-capture differential
display method (IDDM) for the detection of environmentally induced promoters in rhizobacteria, Journal of Microbiological
Methods, 41, 1,
(77), (2000).Crossref
T.
M. Timms-Wilson, R. J. Ellis, A. Renwick, D.
J. Rhodes, D. V. Mavrodi, D.
M. Weller, L. S. Thomashow and M. J. Bailey, Chromosomal Insertion
of Phenazine-1-Carboxylic Acid Biosynthetic Pathway Enhances Efficacy of Damping-off
Disease Control byPseudomonas fluorescens, Molecular Plant-Microbe Interactions,
13, 12,
(1293), (2000).Crossref
Paul
B Rainey and Gail M Preston,
In vivo expression technology strategies: valuable tools for biotechnology, Current Opinion in Biotechnology, 10.1016/S0958-1669(00)00132-4, 11,
5, (440-444), (2000).Crossref
Víctor
De Lorenzo, Pseudomonas entering the post‐genomic era, Environmental Microbiology, 2,
3, (349-354), (2001).Wiley Online
Library
Michael Givskov, Morten
Hentzer, Bjarne Kjær Ersbøll, Arne Heydorn, Claus
Sternberg, Alex Toftgaard Nielsen and Søren Molin, Quantification of biofilm
structures by the novel computer program comstat, Microbiology, 146, 10,
(2395), (2000).Crossref
Douglas
M. Heithoff, Robert L. Sinsheimer, David A. Low and Michael
J. Mahan, in vivo gene expression and the adaptive response: from
pathogenesis to vaccines and antimicrobials, Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences, 10.1098/rstb.2000.0604, 355,
1397, (633-642), (2000).Crossref
Rosaria
Campilongo, Rowena K. Y. Fung, Richard H. Little, Lucia
Grenga, Eleftheria Trampari, Simona Pepe, Govind
Chandra, Clare E. M. Stevenson, Davide Roncarati and Jacob
G. Malone, One ligand, two regulators and three binding sites:
How KDPG controls primary carbon metabolism in Pseudomonas,
PLOS Genetics,
10.1371/journal.pgen.1006839,
13, 6,
(e1006839), (2017).Crossref
Mark
W. Silby and Stuart B. Levy,
Overlapping Protein-Encoding Genes in Pseudomonas fluorescens Pf0-1, PLoS Genetics, 10.1371/journal.pgen.1000094, 4,
6, (e1000094), (2008).Crossref
Alex
Williams, Pierre Pétriacq, David
J. Beerling, T. E. Anne Cotton and Jurriaan Ton, Impacts of Atmospheric
CO2 and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil
Bacteria, Frontiers
in Plant Science, 10.3389/fpls.2018.01493, 9,
(2018).Crossref
Nesli
Tovi, Sammy Frenk, Yitzhak
Hadar and Dror Minz, Host
Specificity and Spatial Distribution Preference of Three Pseudomonas Isolates, Frontiers in Microbiology, 10.3389/fmicb.2018.03263, 9,
(2019).Crossref
if (articleRef) articleRef.style.display = "none";
if(window._satellite)
_satellite.pageBottom();
var _prum=[['id','59e8fecb3847311aab7b23c6'],['mark','firstbyte',(new Date()).getTime()]];(function()var s=document.getElementsByTagName('script')[0],p=document.createElement('script');p.async='async';p.src='//rum-static.pingdom.net/prum.min.js';s.parentNode.insertBefore(p,s);)();