strange issue with glom() method with Pyspark DataFrame
I am using spark version 2.3 and facing an strange issue with dates while using the glom method to see the partitions size.
Below is my dataframe.
df1_data = spark.sql("""
SELECT *
from udb.partitioned_table_df1 where VEH_ENGINE in
(
'ABCDP3F27HL239911'
'ABCDP3F27HL230011'
)
""");
+-----------------+-------------------------+------------------------+----------
-----------+
| VEH_ENGINE |VEH_COUNTRY |VEH_RETAIL_SALE_DATE | VEH_MODEL_YEAR|
+-----------------+-------------------------+------------------------+---------------------+
|ABCDP3F27HL239911| CAN| 0001-01-01| 2017|
|ABCDP3F27HL230011| USA| 0001-01-01| 2018|
+-----------------+-------------------------+------------------------+---------------------+
At the source we have default start date as '0001-01-01' and same date has been loaded to pyspark dataframe as date column. no issues.
I can perform rest of the operations;join,filters etc as usual.
but I am facing an issue when I was looking at the spark partitions which I normally do.
partitionSizedf = df1_data.rdd.glom().map(len).collect()
I am getting below error:
ValueError: ('ordinal must be >= 1', <function <lambda> at 0x7fcc8d1c5848>, (u'ABCDP3F27HL239911', u'CAN', -719164, 2017))
pyspark
add a comment |
I am using spark version 2.3 and facing an strange issue with dates while using the glom method to see the partitions size.
Below is my dataframe.
df1_data = spark.sql("""
SELECT *
from udb.partitioned_table_df1 where VEH_ENGINE in
(
'ABCDP3F27HL239911'
'ABCDP3F27HL230011'
)
""");
+-----------------+-------------------------+------------------------+----------
-----------+
| VEH_ENGINE |VEH_COUNTRY |VEH_RETAIL_SALE_DATE | VEH_MODEL_YEAR|
+-----------------+-------------------------+------------------------+---------------------+
|ABCDP3F27HL239911| CAN| 0001-01-01| 2017|
|ABCDP3F27HL230011| USA| 0001-01-01| 2018|
+-----------------+-------------------------+------------------------+---------------------+
At the source we have default start date as '0001-01-01' and same date has been loaded to pyspark dataframe as date column. no issues.
I can perform rest of the operations;join,filters etc as usual.
but I am facing an issue when I was looking at the spark partitions which I normally do.
partitionSizedf = df1_data.rdd.glom().map(len).collect()
I am getting below error:
ValueError: ('ordinal must be >= 1', <function <lambda> at 0x7fcc8d1c5848>, (u'ABCDP3F27HL239911', u'CAN', -719164, 2017))
pyspark
add a comment |
I am using spark version 2.3 and facing an strange issue with dates while using the glom method to see the partitions size.
Below is my dataframe.
df1_data = spark.sql("""
SELECT *
from udb.partitioned_table_df1 where VEH_ENGINE in
(
'ABCDP3F27HL239911'
'ABCDP3F27HL230011'
)
""");
+-----------------+-------------------------+------------------------+----------
-----------+
| VEH_ENGINE |VEH_COUNTRY |VEH_RETAIL_SALE_DATE | VEH_MODEL_YEAR|
+-----------------+-------------------------+------------------------+---------------------+
|ABCDP3F27HL239911| CAN| 0001-01-01| 2017|
|ABCDP3F27HL230011| USA| 0001-01-01| 2018|
+-----------------+-------------------------+------------------------+---------------------+
At the source we have default start date as '0001-01-01' and same date has been loaded to pyspark dataframe as date column. no issues.
I can perform rest of the operations;join,filters etc as usual.
but I am facing an issue when I was looking at the spark partitions which I normally do.
partitionSizedf = df1_data.rdd.glom().map(len).collect()
I am getting below error:
ValueError: ('ordinal must be >= 1', <function <lambda> at 0x7fcc8d1c5848>, (u'ABCDP3F27HL239911', u'CAN', -719164, 2017))
pyspark
I am using spark version 2.3 and facing an strange issue with dates while using the glom method to see the partitions size.
Below is my dataframe.
df1_data = spark.sql("""
SELECT *
from udb.partitioned_table_df1 where VEH_ENGINE in
(
'ABCDP3F27HL239911'
'ABCDP3F27HL230011'
)
""");
+-----------------+-------------------------+------------------------+----------
-----------+
| VEH_ENGINE |VEH_COUNTRY |VEH_RETAIL_SALE_DATE | VEH_MODEL_YEAR|
+-----------------+-------------------------+------------------------+---------------------+
|ABCDP3F27HL239911| CAN| 0001-01-01| 2017|
|ABCDP3F27HL230011| USA| 0001-01-01| 2018|
+-----------------+-------------------------+------------------------+---------------------+
At the source we have default start date as '0001-01-01' and same date has been loaded to pyspark dataframe as date column. no issues.
I can perform rest of the operations;join,filters etc as usual.
but I am facing an issue when I was looking at the spark partitions which I normally do.
partitionSizedf = df1_data.rdd.glom().map(len).collect()
I am getting below error:
ValueError: ('ordinal must be >= 1', <function <lambda> at 0x7fcc8d1c5848>, (u'ABCDP3F27HL239911', u'CAN', -719164, 2017))
pyspark
pyspark
asked Nov 16 '18 at 8:52
vikrant ranavikrant rana
6521317
6521317
add a comment |
add a comment |
0
active
oldest
votes
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53334354%2fstrange-issue-with-glom-method-with-pyspark-dataframe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53334354%2fstrange-issue-with-glom-method-with-pyspark-dataframe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown