斯多葛主義

Multi tool use斯多葛主義(英語:Stoicism),斯多葛又譯斯多噶或斯多亞,古希臘和羅馬帝國思想流派,哲學家芝諾於西元前3世紀早期創立,在雅典時他常「在門廊」(希臘語發音為斯多噶)講學,傳人有克雷安德與克呂西普;在羅馬帝國,代表思想家有塞內卡、愛比克泰德與馬爾庫斯·奧列里烏斯。斯多噶派學說以倫理學為重心,秉持泛神物質一元論,強調神、自然與人為一體,「神」是宇宙靈魂和智慧,其理性滲透整個宇宙。個體小「我」必須依照自然而生活,愛人如己,融合於與整個大自然。斯多葛学派认为每个人与宇宙一样,只不过是人是宇宙缩影。
歷史
前3世紀早期,腓尼基人芝諾創立斯多葛派,學說繼承人是克雷安德,再傳給克呂西普。早期斯多噶派學者多是敘利亞人,後期則大多是羅馬人。斯多葛派思想以倫理學為重心,與早期純粹希臘哲學不同,芝諾是唯物主義者,強調德行,不重視形而上學,後來斯多噶派卻滲入柏拉圖主義,逐漸放棄唯物主義。斯多噶派比較投合統治者,亞歷山大大帝以後的許多國王,都自稱是斯多噶派。在羅馬帝國,1世紀時的大臣塞內卡、出身奴隸的愛比克泰德,以及2世紀羅馬皇帝马尔库斯·奥列里乌斯,都是斯多噶派的代表學者,最後者著有《沉思錄》[1]。亞歷山大城的希臘文法學家迪斯科洛斯也深受斯多噶派影響[2]:446。
思想
斯多噶派秉持泛神主義物質一元論,反對任何形式的二元論,特別是柏拉圖的二元論、精神世界和物質世界的二元對立、靈魂與身體的二元對立,甚至理性與非理性的二元對立。斯多噶派認為,宇宙是完整的神聖實體,由神、人和自然世界共同組成。宇宙是一個統一體,自然、人和神也是一體的。斯多噶派將倫理學和靈魂論奠立在物理學上[3]:1、43,「神」是宇宙靈魂和智慧,此惟一的精神,分散於物質個體之中,神性的精粹和最崇高的智慧,則存在於「以太」中[2]:141-142。神的理性滲透整個宇宙,管理和掌握整個宇宙;人是由靈魂與身體共同組成,人的理性來自神的理性。因著理性,人意識到人的目的當是追求德行。人初生時,如同動物依照本能生活,及至成年,理性方發展出來。所有人都具有相同的理性,同屬於人類大家族,人要對他人有責任,愛人如己[3]:44、1。
斯多噶派認為世界有限而時間無限,世界不斷起滅,其中發生的事件,每一次都會重演重現。個體小「我」只有踏進和通過永恒的時間,才能成為內在於世界整體的一部份。斯多噶派有一格言:「依照自然而生活」,「自然」即宇宙運行的律則,受理性支配。人是自然的一部份,靈魂在自然中最偉大最高貴,理性也是人的主要特徵,成為人和禽獸的主要差別,「依照自然而生活」就是依照理性而行,使自然與人通為一。個體小「我」必須擴大自己,融合於整個大自然。小「我」的靈魂只有飛到高空,進入大自然的核心,才能成就最高度的充實和圓滿。靈魂喜愛在星辰之間翱翔,在那裡靈魂會得到豐富的營養,繼續成長,解除所有的束縛,回歸本源[4]:216-217。
参考文献
^ 羅素(Bertrand Russell). 第二十八章〈斯多葛主義〉. 《西方哲學史》. 翼報. [2014-11-02] (中文(繁體)).
^ 2.02.1 黃正謙. 《東海西海「心」「理」相通——中西文化比較通釋》. 香港: 中華書局【香港】有限公司. 2012. ISBN 9789888148615 (中文(繁體)).
^ 3.03.1 丁福寧. 〈斯多噶學派的視為己有(Oikeiōsis)〉. 《國立台灣大學哲學論評》. 2013, 46: 1–52 [2014-11-02] (中文(繁體)).
^ 余英時. 《論天人之際:中國古代思想起源試探》. 台北: 聯經出版事業股份有限公司. 2014. ISBN 957084325X (中文(繁體)).
vMgdWFM82DNNkUclwVgp3VQH5CsH CRCkSpefHDvW9
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...