Improving my OLS Rolling Regression with lapply
up vote
0
down vote
favorite
This is the code of my rolling regression:
# betas from rolling regression will be in betas_rolling_250 matrix
fixed.window<-30
models<-c("A~B+E","A~B+C","A~B+D","A~B+C","A~B+F","A~B+B","A~B+F","A~B+C")
betas_rolling_250<-matrix(,nrow=length(models),ncol=250-fixed.window)
rownames(betas_rolling_250)<-models;
#Sample Matrix
sample_matrix_250<-matrix(rexp(10, rate=.1),nrow=250, ncol=6)
colnames(sample_matrix_250)<-c("A","B","C","D","E","F")
for(i in 1:(length(sample_matrix_250[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling_250)))
coefs<-lm(rownames(betas_rolling_250)[k],data=as.data.frame(sample_matrix_250[(221-i):(251-i),]))$coefficients[3]
betas_rolling_250[k,i]<-coefs
First question:
Is it possible to implement this by using lapply function?
I am asking this beacause I will have to do this 4 times. Because I have more 4 differents size dataframes: (sample_matrix_220
, sample_matrix_200
and sample_matrix_180
). I dont want my code to be huge.
Ive been thinking in using list. Thats why I though about lapply function.
Is it possible?
r lapply
add a comment |
up vote
0
down vote
favorite
This is the code of my rolling regression:
# betas from rolling regression will be in betas_rolling_250 matrix
fixed.window<-30
models<-c("A~B+E","A~B+C","A~B+D","A~B+C","A~B+F","A~B+B","A~B+F","A~B+C")
betas_rolling_250<-matrix(,nrow=length(models),ncol=250-fixed.window)
rownames(betas_rolling_250)<-models;
#Sample Matrix
sample_matrix_250<-matrix(rexp(10, rate=.1),nrow=250, ncol=6)
colnames(sample_matrix_250)<-c("A","B","C","D","E","F")
for(i in 1:(length(sample_matrix_250[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling_250)))
coefs<-lm(rownames(betas_rolling_250)[k],data=as.data.frame(sample_matrix_250[(221-i):(251-i),]))$coefficients[3]
betas_rolling_250[k,i]<-coefs
First question:
Is it possible to implement this by using lapply function?
I am asking this beacause I will have to do this 4 times. Because I have more 4 differents size dataframes: (sample_matrix_220
, sample_matrix_200
and sample_matrix_180
). I dont want my code to be huge.
Ive been thinking in using list. Thats why I though about lapply function.
Is it possible?
r lapply
zoo::rollapply
is probably convenient
– Richard Telford
Nov 11 at 15:32
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
This is the code of my rolling regression:
# betas from rolling regression will be in betas_rolling_250 matrix
fixed.window<-30
models<-c("A~B+E","A~B+C","A~B+D","A~B+C","A~B+F","A~B+B","A~B+F","A~B+C")
betas_rolling_250<-matrix(,nrow=length(models),ncol=250-fixed.window)
rownames(betas_rolling_250)<-models;
#Sample Matrix
sample_matrix_250<-matrix(rexp(10, rate=.1),nrow=250, ncol=6)
colnames(sample_matrix_250)<-c("A","B","C","D","E","F")
for(i in 1:(length(sample_matrix_250[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling_250)))
coefs<-lm(rownames(betas_rolling_250)[k],data=as.data.frame(sample_matrix_250[(221-i):(251-i),]))$coefficients[3]
betas_rolling_250[k,i]<-coefs
First question:
Is it possible to implement this by using lapply function?
I am asking this beacause I will have to do this 4 times. Because I have more 4 differents size dataframes: (sample_matrix_220
, sample_matrix_200
and sample_matrix_180
). I dont want my code to be huge.
Ive been thinking in using list. Thats why I though about lapply function.
Is it possible?
r lapply
This is the code of my rolling regression:
# betas from rolling regression will be in betas_rolling_250 matrix
fixed.window<-30
models<-c("A~B+E","A~B+C","A~B+D","A~B+C","A~B+F","A~B+B","A~B+F","A~B+C")
betas_rolling_250<-matrix(,nrow=length(models),ncol=250-fixed.window)
rownames(betas_rolling_250)<-models;
#Sample Matrix
sample_matrix_250<-matrix(rexp(10, rate=.1),nrow=250, ncol=6)
colnames(sample_matrix_250)<-c("A","B","C","D","E","F")
for(i in 1:(length(sample_matrix_250[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling_250)))
coefs<-lm(rownames(betas_rolling_250)[k],data=as.data.frame(sample_matrix_250[(221-i):(251-i),]))$coefficients[3]
betas_rolling_250[k,i]<-coefs
First question:
Is it possible to implement this by using lapply function?
I am asking this beacause I will have to do this 4 times. Because I have more 4 differents size dataframes: (sample_matrix_220
, sample_matrix_200
and sample_matrix_180
). I dont want my code to be huge.
Ive been thinking in using list. Thats why I though about lapply function.
Is it possible?
r lapply
r lapply
asked Nov 11 at 14:42
Diogo Bastos
434313
434313
zoo::rollapply
is probably convenient
– Richard Telford
Nov 11 at 15:32
add a comment |
zoo::rollapply
is probably convenient
– Richard Telford
Nov 11 at 15:32
zoo::rollapply
is probably convenient– Richard Telford
Nov 11 at 15:32
zoo::rollapply
is probably convenient– Richard Telford
Nov 11 at 15:32
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
Consider generalizing your setup by passing the only changed variable, matrix column size, as input parameter. Then, past list of numeric values into an lapply
call.
Below replaces any 250 to a variable (adjust as needed). The static models and fixed.window should be assigned once outside the function.
get_coeffs <- function(mat_size)
betas_rolling <- matrix(,nrow=length(models), ncol=mat_size-fixed.window)
rownames(betas_rolling) <- models
sample_matrix <- matrix(rexp(10, rate=.1), nrow=mat_size, ncol=6)
colnames(sample_matrix) <- LETTERS[1:6]
for(i in 1:(length(sample_matrix[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling)))
coefs <- lm(rownames(betas_rolling)[k],
as.data.frame(sample_matrix[(mat_size-fixed.window)-i):(mat_size+1-i),]))$coefficients[3]
betas_rolling[k,i] <- coefs
return(betas_rolling)
matrix_list <- lapply(c(180, 200, 220, 250), get_coeffs)
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Consider generalizing your setup by passing the only changed variable, matrix column size, as input parameter. Then, past list of numeric values into an lapply
call.
Below replaces any 250 to a variable (adjust as needed). The static models and fixed.window should be assigned once outside the function.
get_coeffs <- function(mat_size)
betas_rolling <- matrix(,nrow=length(models), ncol=mat_size-fixed.window)
rownames(betas_rolling) <- models
sample_matrix <- matrix(rexp(10, rate=.1), nrow=mat_size, ncol=6)
colnames(sample_matrix) <- LETTERS[1:6]
for(i in 1:(length(sample_matrix[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling)))
coefs <- lm(rownames(betas_rolling)[k],
as.data.frame(sample_matrix[(mat_size-fixed.window)-i):(mat_size+1-i),]))$coefficients[3]
betas_rolling[k,i] <- coefs
return(betas_rolling)
matrix_list <- lapply(c(180, 200, 220, 250), get_coeffs)
add a comment |
up vote
1
down vote
Consider generalizing your setup by passing the only changed variable, matrix column size, as input parameter. Then, past list of numeric values into an lapply
call.
Below replaces any 250 to a variable (adjust as needed). The static models and fixed.window should be assigned once outside the function.
get_coeffs <- function(mat_size)
betas_rolling <- matrix(,nrow=length(models), ncol=mat_size-fixed.window)
rownames(betas_rolling) <- models
sample_matrix <- matrix(rexp(10, rate=.1), nrow=mat_size, ncol=6)
colnames(sample_matrix) <- LETTERS[1:6]
for(i in 1:(length(sample_matrix[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling)))
coefs <- lm(rownames(betas_rolling)[k],
as.data.frame(sample_matrix[(mat_size-fixed.window)-i):(mat_size+1-i),]))$coefficients[3]
betas_rolling[k,i] <- coefs
return(betas_rolling)
matrix_list <- lapply(c(180, 200, 220, 250), get_coeffs)
add a comment |
up vote
1
down vote
up vote
1
down vote
Consider generalizing your setup by passing the only changed variable, matrix column size, as input parameter. Then, past list of numeric values into an lapply
call.
Below replaces any 250 to a variable (adjust as needed). The static models and fixed.window should be assigned once outside the function.
get_coeffs <- function(mat_size)
betas_rolling <- matrix(,nrow=length(models), ncol=mat_size-fixed.window)
rownames(betas_rolling) <- models
sample_matrix <- matrix(rexp(10, rate=.1), nrow=mat_size, ncol=6)
colnames(sample_matrix) <- LETTERS[1:6]
for(i in 1:(length(sample_matrix[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling)))
coefs <- lm(rownames(betas_rolling)[k],
as.data.frame(sample_matrix[(mat_size-fixed.window)-i):(mat_size+1-i),]))$coefficients[3]
betas_rolling[k,i] <- coefs
return(betas_rolling)
matrix_list <- lapply(c(180, 200, 220, 250), get_coeffs)
Consider generalizing your setup by passing the only changed variable, matrix column size, as input parameter. Then, past list of numeric values into an lapply
call.
Below replaces any 250 to a variable (adjust as needed). The static models and fixed.window should be assigned once outside the function.
get_coeffs <- function(mat_size)
betas_rolling <- matrix(,nrow=length(models), ncol=mat_size-fixed.window)
rownames(betas_rolling) <- models
sample_matrix <- matrix(rexp(10, rate=.1), nrow=mat_size, ncol=6)
colnames(sample_matrix) <- LETTERS[1:6]
for(i in 1:(length(sample_matrix[,1])-fixed.window))
for(k in 1:length(rownames(betas_rolling)))
coefs <- lm(rownames(betas_rolling)[k],
as.data.frame(sample_matrix[(mat_size-fixed.window)-i):(mat_size+1-i),]))$coefficients[3]
betas_rolling[k,i] <- coefs
return(betas_rolling)
matrix_list <- lapply(c(180, 200, 220, 250), get_coeffs)
answered Nov 11 at 15:50
Parfait
48.5k84168
48.5k84168
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53249806%2fimproving-my-ols-rolling-regression-with-lapply%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
zoo::rollapply
is probably convenient– Richard Telford
Nov 11 at 15:32