卡纳维拉尔角

Multi tool use坐标:28°27′20″N 80°31′40″W / 28.45556°N 80.52778°W / 28.45556; -80.52778
卡纳维拉尔角(英语:Cape Canaveral),1963年—1973年曾稱甘迺迪角(英语:Cape Kennedy),是位于美国佛罗里达州布里瓦德郡大西洋沿岸的一条狭长的陆地,地理位置为北纬28º33'21",西经80º36'17"。
概况
卡纳维拉尔角所在地是廣為人知的航太海岸,附近有肯尼迪太空中心和卡纳维拉尔角空军基地,美国的太空穿梭機都是从这两个地方发射,所以卡纳维拉尔角成了它们的代名词。卡纳维拉尔角东部靠近梅里特岛(Merritt Island),之间被巴纳纳河分开。
这里还有一座灯塔和卡纳维拉尔港,城区在卡纳维拉尔角南面几英里远的地方。此外本地还有一个蚊子潟湖(Mosquito Lagoon),印第安河,梅里特岛,国家野生动物保护区和卡纳维拉尔国家海岸。
1950年6月24日,美国第一艘火箭“丰收8号”在卡纳维拉尔角第三发射平台顺利升空。1959年2月6日在此地成功地进行了提坦(Titan)洲际弹道导弹的试射。美国国家航空航天局(NASA)的所有载人的航天器都是从这里发射升空的。
卡纳维拉尔角之所以被选中作为火箭发射基地主要是因为可以更好地利用地球的自转,在赤道附近由地球自转产生的切线速度最大,可以提供火箭部份动能以提高火箭的运载能力,要想利用这种优势,火箭升空后必须向东飞行同地球的自转方向保持一致。另一考虑是如果发生意外,火箭跌落/爆炸/燃燒/污染的地方是人口稀少的地区,不会造成大伤害,失事火箭掉入大海是最好的结果。
尽管美国有很多地方靠近赤道并且接近大海,例如夏威夷和波多黎各等,但是佛罗里达州同它们相比后勤和运输很便利。卡纳维拉尔角的最尖端就是空军基地。
名字的变更
从1963年到1973年它被称为肯尼迪角,总统约翰·肯尼迪是美国航天计划的热心支持者。在他1963年达拉斯遇刺后,他的遗孀杰奎琳·肯尼迪曾向继任总统林登·约翰逊建议将卡纳维拉尔角的所有军事设施更名以示纪念。然而林登·约翰逊不仅将所有的军事设施,而且还把全部地区更了名。因此卡纳维拉尔角变成了肯尼迪角。
尽管此次更名得到了美国国家地理名称委员会的批准,但是在佛罗里达州却遇到了阻力,特别是在卡纳维拉尔城。1973年佛罗里达州通过了一项法律决定恢复有着400年历史的名字,美国国家地理名称委员会也同意了。杰奎琳·肯尼迪在声明中称,如果她事先知道这个名字有着400多年的历史,就肯定不会提议更名了。但是此地的航天中心仍然被称为肯尼迪航天中心。
名字的渊源
此地由早期的西班牙殖民者命名,原意为藤丛,直译为长满藤科植物的角。
 | 维基共享资源中相关的多媒体资源:卡纳维拉尔角
|
zGehgpuerdgudDow3,w9V741EOckKbwEJ51QyWopNDIGXikKF3BuixPei9
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...