中国学科分类国家标准/450

Multi tool use
450 冶金工程技术
- 450.10 冶金物理化学
- 450.15 冶金反应工程
- 450.20 冶金原料与预处理
- 450.25 冶金热能工程
- 450.2510 冶金燃料
- 450.2520 燃烧理论
- 450.2530 燃烧计算
- 450.2540 冶金分析
- 450.2599 冶金热能工程其他学科
- 450.30 冶金技术
- 450.3010 提炼冶金
- 450.3015 粉末冶金
- 450.3020 真空冶金
- 450.3025 电磁冶金
- 450.3030 原子能冶金
- 450.3035 湿法冶金
- 450.3040 纤维冶金
- 450.3045 卤素冶金
- 450.3050 微生物冶金
- 450.3099 冶金技术其他学科
- 450.35 钢铁冶金
- 450.3510 炼铁
- 450.3520 炼钢
- 450.3530 铁合金冶炼
- 450.3599 钢铁冶金其他学科
- 450.40 有色金属冶金
- 450.45 轧制
- 450.50 冶金机械及自动化
- 450.99 冶金工程技术其他学科
中华人民共和国学科分类与代码国家标准(GB/T 13745-92)
|
---|
| 自然科学 | 农业科学 | 医药科学 | 工程与技术科学 | 人文与社会科学 | | 110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学
| 210 农学 220 林学 230 畜牧、兽医科学 240 水产学
| 310 基础医学 320 临床医学 330 预防医学与卫生学 340 军事医学与特种医学 350 药学 360 中医学与中药学
| 410 工程与技术科学基础学科 420 测绘科学技术 430 材料科学 440 矿山工程技术 450 冶金工程技术 460 机械工程 470 动力与电气工程 480 能源科学技术 490 核科学技术 510 电子、通信与自动控制技术 520 计算机科学技术 530 化学工程 540 纺织科学技术 550 食品科学技术 560 土木建筑工程 570 水利工程 580 交通运输工程 590 航空、航天科学技术 610 环境科学技术 620 安全科学技术 630 管理学
| 710 马克思主义 720 哲学 730 宗教学 740 语言学 750 文学 760 艺术学 770 历史学 780 考古学 790 经济学 810 政治学 820 法学 830 军事学 840 社会学 850 民族学 860 新闻学与传播学 870 图书馆、情报与文献学 880 教育学 890 体育科学 910 统计学
|
|
|
4js aqV2IrmLqOjdla,vGLeo,m68BqU7ENcqGS5jRxUkx8B r4vN,MVi
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...