蛋白

Multi tool use
本文介紹的是一種食物原料。關於一種生物分子,請見「
蛋白质」。
蛋白(英语:Egg white、albumen、glair/glaire)是指蛋(尤其指雞蛋)內的半透明液體,故又称为蛋清,與蛋黃相對。蛋白遇熱後會凝固成白色固體,因而得名。
蛋白就如同哺乳類的羊水一樣有防震、保溼及保護的作用。如果用高速打蛋器把蛋白攪拌,會呈現泡沫狀像海棉般有彈性,是做蛋糕的首要步驟。
雞蛋白的成分
雞蛋白在不計蛋殼的情況下,約佔全雞蛋重量的三分之二,其中90%的重量來自水分。其餘重量則是蛋白質、微量的礦物質、脂肪物質、維生素及葡萄糖。美國最巨大的雞蛋蛋白重38克,其中含有4.7克蛋白質、0.3克碳水化合物及62毫克鈉,並含有約20大卡的熱量。雞蛋白內不含膳食膽固醇,但含有約40種不同的蛋白質。以下為雞蛋白內所含蛋白質的百分比的列表(共列出 96.25%):
- 54% 卵蛋白素
- 12% 卵運鐵蛋白
- 11% 卵類粘蛋白
- 4% 卵球蛋白G2
- 4% 卵球蛋白G3
- 3.5% 卵粘蛋白
- 3.4% 溶菌酶
- 1.5% 卵蛋白酶抑制物
- 1% 卵糖蛋白
- 0.8% 黃素蛋白
- 0.5% 卵巨球蛋白
- 0.5% 卵白素
- 0.05% 血清胱蛋白
参见
引用文獻
.mw-parser-output .refbeginfont-size:90%;margin-bottom:0.5em.mw-parser-output .refbegin-hanging-indents>ullist-style-type:none;margin-left:0.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>ddmargin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none.mw-parser-output .refbegin-100font-size:100%
Elmhurst College, Denaturation Protein
Exploratorium, Anatomy of an Egg
- Gilbertus. Compendium Medicine Gilberti Anglici Tam Morborum Universalium Quam Particularium Nondum Medicis Sed & Cyrurgicis Utilissimum. Lugduni: Impressum per Jacobum Sacconum, expensis Vincentii de Portonariis, 1510.
- Good Eats, Let Them Eat Foam. DVD. Television Food Network, June 13, 2001.
- McGee, Harold. On Food and Cooking: The Science and Lore of the Kitchen. New York: Scribner, 2004, edited by Vinay.
外部連結
 | 維基教科書的食譜有以下内容: Eggs
|
維基詞典中與albumen有關的條目
維基詞典中與glair有關的條目
aP,zlZXuG,fYvTmQEhGl065V,I,Gantg9L,F8Hkb xe61lSFoBDSfVdqN6x
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...