乌颜·旺楚克

Multi tool usebody.skin-minerva .mw-parser-output table.infobox captiontext-align:center
Gongsa Ugyen Wangchuck 贡萨·烏金·旺楚克 |
---|
第1任不丹國王
|
 |
在位 | 1907年12月17日-1926年8月26日(18年252天) |
---|
加冕 | 1907年12月17日 |
---|
出生 | 1862年6月11日 不丹布姆唐宗旺地確林宮 |
---|
去世 | 1926年8月26日(1926-08-26)(64歲) 不丹布姆唐宗
|
---|
繼任 | 吉格梅·旺楚克
|
---|
王室 | 旺楚克王朝
|
---|
父親 | 晋美南嘉(Jigme Namgyal) |
---|
母親 | Pema Choki |
---|
宗教信仰 | 藏傳佛教
|
---|
乌颜·旺楚克(宗喀语:.mw-parser-output .uchenfont-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomolangma-Uchen Suring","Qomolangma-Uchen Sutung","Qomolangma-Title","Qomolangma-Subtitle","Qomolangma-Woodblock","DDC Uchen","DDC Rinzin",Kailash,"BabelStone Tibetan",Jomolhari,"TCRC Youtso Unicode","Tibetan Machine Uni",Wangdi29,"Noto Sans Tibetan","Microsoft Himalaya".mw-parser-output .umefont-family:"Qomolangma-Betsu","Qomolangma-Chuyig","Qomolangma-Drutsa","Qomolangma-Edict","Qomolangma-Tsumachu","Qomolangma-Tsuring","Qomolangma-Tsutong","TibetanSambhotaYigchung","TibetanTsugRing","TibetanYigchung"ཨོ་རྒྱན་དབང་ཕྱུག་,威利:o rgyan dbang phyug,THL:Ugyen Wangchuck;1862年6月11日-1926年8月26日),不丹建立者,第一任不丹國王,按照藏语应该翻译为贡萨乌金旺秋。1907年乌颜·旺楚克作为不丹独立部落的首领之一,得到当时印度的保护国英国的帮助下,将不丹从清朝统治下独立出来并建立不丹王国(即目前旺楚克王朝)。
儿子
長子吉格梅·旺楚克。
參考
- 不丹政府网(英语):http://www.bhutan.gov.bt
- 旺楚克家族
乌颜·旺楚克
不丹旺楚克王朝 出生于:1861年6月11日逝世於:1926年8月26日
|
---|
前任: 建国君主
| 不丹國王 1907年-1926年
| 繼任: 吉格梅·旺楚克
|
不丹国王
|
---|
| 烏顏·旺楚克 → 吉格梅·旺楚克 → 吉格梅·多吉·旺楚克 → 吉格梅·辛格·旺楚克 → 吉格梅·凱薩爾·納姆耶爾·旺楚克
| |
|
HZLyK7Qs,3S7BF41JDCLgJXPIRAg1nWcACG9y,D3ZhFdCK2LmRVwgE9ltTZMYo W7dlL2W
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...