Reshape pandas dataframe to turn categorical columns into individual columns
I have data that looks like this:
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 85 14
1 B Natural Gas Salt water Gas Water 95 78
2 C Gasoline Waste water Refined Water 33 25
3 D Diesel Motor oil Refined Oil 49 54
4 E Bitumen Sour Gas Oil Gas 92 86
The Category
and Quantity
columns refer to the corresponding the Substance
columns.
I want to expand the Category
columns as a new column for each unique value and have the Quantity
value as the cell value. Non-existant categories would be NaN. So the resulting frame would look like this:
ID Oil Gas Water Refined
0 A 85 14 NaN NaN
1 B NaN 95 78 NaN
2 C NaN NaN 25 33
3 D 54 NaN NaN 49
4 E 92 86 NaN NaN
I tried .melt()
followed by .pivot_table()
but for some reason values get duplicated across the new category columns.
python pandas
add a comment |
I have data that looks like this:
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 85 14
1 B Natural Gas Salt water Gas Water 95 78
2 C Gasoline Waste water Refined Water 33 25
3 D Diesel Motor oil Refined Oil 49 54
4 E Bitumen Sour Gas Oil Gas 92 86
The Category
and Quantity
columns refer to the corresponding the Substance
columns.
I want to expand the Category
columns as a new column for each unique value and have the Quantity
value as the cell value. Non-existant categories would be NaN. So the resulting frame would look like this:
ID Oil Gas Water Refined
0 A 85 14 NaN NaN
1 B NaN 95 78 NaN
2 C NaN NaN 25 33
3 D 54 NaN NaN 49
4 E 92 86 NaN NaN
I tried .melt()
followed by .pivot_table()
but for some reason values get duplicated across the new category columns.
python pandas
add a comment |
I have data that looks like this:
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 85 14
1 B Natural Gas Salt water Gas Water 95 78
2 C Gasoline Waste water Refined Water 33 25
3 D Diesel Motor oil Refined Oil 49 54
4 E Bitumen Sour Gas Oil Gas 92 86
The Category
and Quantity
columns refer to the corresponding the Substance
columns.
I want to expand the Category
columns as a new column for each unique value and have the Quantity
value as the cell value. Non-existant categories would be NaN. So the resulting frame would look like this:
ID Oil Gas Water Refined
0 A 85 14 NaN NaN
1 B NaN 95 78 NaN
2 C NaN NaN 25 33
3 D 54 NaN NaN 49
4 E 92 86 NaN NaN
I tried .melt()
followed by .pivot_table()
but for some reason values get duplicated across the new category columns.
python pandas
I have data that looks like this:
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 85 14
1 B Natural Gas Salt water Gas Water 95 78
2 C Gasoline Waste water Refined Water 33 25
3 D Diesel Motor oil Refined Oil 49 54
4 E Bitumen Sour Gas Oil Gas 92 86
The Category
and Quantity
columns refer to the corresponding the Substance
columns.
I want to expand the Category
columns as a new column for each unique value and have the Quantity
value as the cell value. Non-existant categories would be NaN. So the resulting frame would look like this:
ID Oil Gas Water Refined
0 A 85 14 NaN NaN
1 B NaN 95 78 NaN
2 C NaN NaN 25 33
3 D 54 NaN NaN 49
4 E 92 86 NaN NaN
I tried .melt()
followed by .pivot_table()
but for some reason values get duplicated across the new category columns.
python pandas
python pandas
asked Nov 14 '18 at 21:56
robrocrobroc
4851313
4851313
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
You need to use pd.melt
then groupby
:
np.random.seed(0)
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+')
.groupby(['ID','Category'])['Quantity'].sum()
.unstack().reset_index()
Output:
Category ID Gas Oil Refined Water
0 A 19.0 54.0 NaN NaN
1 B 57.0 NaN NaN 93.0
2 C NaN NaN 74.0 31.0
3 D NaN 46.0 77.0 NaN
4 E 97.0 77.0 NaN NaN
1
This works, but not as is. It was creating a ton of duplicate columns and adding all of the numbers, resulting in inaccurate values. But adding two methods to the chain,reset_index
anddrop_duplicates
, worked:pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+') .reset_index().drop_duplicates(subset=['ID', 'Num']) .groupby(['ID','Category'])['Quantity'].sum() .unstack().reset_index()
– robroc
Nov 14 '18 at 22:48
I'll add this nifty solution also needs some adaptation for the olderpandas
0.19.
– kabanus
Nov 14 '18 at 22:53
add a comment |
Here is my semi-manual approach:
>>> df
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 74 49
1 B Natural Gas Salt water Gas Water 75 91
2 C Gasoline Waste water Refined Water 24 38
3 D Diesel Motor oil Refined Oil 19 95
4 E Bitumen Sour Gas Oil Gas 50 35
>>> newdf=pd.DataFrame(columns=set(df[['Category1','Category2']].values.flatten()),index=df.index)
>>> for name in newdf:
newdf[name]=pd.concat([df[df['Category1']==name]['Quantity1'],df[df['Category2']==name]['Quantity2']])
...
>>> newdf
Gas Oil Water Refined
0 49 74 NaN NaN
1 75 NaN 91 NaN
2 NaN NaN 38 24
3 NaN 95 NaN 19
4 35 50 NaN NaN
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53309324%2freshape-pandas-dataframe-to-turn-categorical-columns-into-individual-columns%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
You need to use pd.melt
then groupby
:
np.random.seed(0)
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+')
.groupby(['ID','Category'])['Quantity'].sum()
.unstack().reset_index()
Output:
Category ID Gas Oil Refined Water
0 A 19.0 54.0 NaN NaN
1 B 57.0 NaN NaN 93.0
2 C NaN NaN 74.0 31.0
3 D NaN 46.0 77.0 NaN
4 E 97.0 77.0 NaN NaN
1
This works, but not as is. It was creating a ton of duplicate columns and adding all of the numbers, resulting in inaccurate values. But adding two methods to the chain,reset_index
anddrop_duplicates
, worked:pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+') .reset_index().drop_duplicates(subset=['ID', 'Num']) .groupby(['ID','Category'])['Quantity'].sum() .unstack().reset_index()
– robroc
Nov 14 '18 at 22:48
I'll add this nifty solution also needs some adaptation for the olderpandas
0.19.
– kabanus
Nov 14 '18 at 22:53
add a comment |
You need to use pd.melt
then groupby
:
np.random.seed(0)
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+')
.groupby(['ID','Category'])['Quantity'].sum()
.unstack().reset_index()
Output:
Category ID Gas Oil Refined Water
0 A 19.0 54.0 NaN NaN
1 B 57.0 NaN NaN 93.0
2 C NaN NaN 74.0 31.0
3 D NaN 46.0 77.0 NaN
4 E 97.0 77.0 NaN NaN
1
This works, but not as is. It was creating a ton of duplicate columns and adding all of the numbers, resulting in inaccurate values. But adding two methods to the chain,reset_index
anddrop_duplicates
, worked:pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+') .reset_index().drop_duplicates(subset=['ID', 'Num']) .groupby(['ID','Category'])['Quantity'].sum() .unstack().reset_index()
– robroc
Nov 14 '18 at 22:48
I'll add this nifty solution also needs some adaptation for the olderpandas
0.19.
– kabanus
Nov 14 '18 at 22:53
add a comment |
You need to use pd.melt
then groupby
:
np.random.seed(0)
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+')
.groupby(['ID','Category'])['Quantity'].sum()
.unstack().reset_index()
Output:
Category ID Gas Oil Refined Water
0 A 19.0 54.0 NaN NaN
1 B 57.0 NaN NaN 93.0
2 C NaN NaN 74.0 31.0
3 D NaN 46.0 77.0 NaN
4 E 97.0 77.0 NaN NaN
You need to use pd.melt
then groupby
:
np.random.seed(0)
df = pd.DataFrame(data=[list('ABCDE'),
['Crude Oil', 'Natural Gas', 'Gasoline', 'Diesel', 'Bitumen'],
['Natural Gas', 'Salt water', 'Waste water', 'Motor oil', 'Sour Gas'],
['Oil', 'Gas', 'Refined', 'Refined', 'Oil'],
['Gas', 'Water', 'Water', 'Oil', 'Gas'],
list(np.random.randint(10, 100, 5)),
list(np.random.randint(10, 100, 5))]
).T
df.columns =['ID', 'Substance1', 'Substance2', 'Category1', 'Category2', 'Quantity1', 'Quantity2']
pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+')
.groupby(['ID','Category'])['Quantity'].sum()
.unstack().reset_index()
Output:
Category ID Gas Oil Refined Water
0 A 19.0 54.0 NaN NaN
1 B 57.0 NaN NaN 93.0
2 C NaN NaN 74.0 31.0
3 D NaN 46.0 77.0 NaN
4 E 97.0 77.0 NaN NaN
answered Nov 14 '18 at 22:05
Scott BostonScott Boston
54.7k73056
54.7k73056
1
This works, but not as is. It was creating a ton of duplicate columns and adding all of the numbers, resulting in inaccurate values. But adding two methods to the chain,reset_index
anddrop_duplicates
, worked:pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+') .reset_index().drop_duplicates(subset=['ID', 'Num']) .groupby(['ID','Category'])['Quantity'].sum() .unstack().reset_index()
– robroc
Nov 14 '18 at 22:48
I'll add this nifty solution also needs some adaptation for the olderpandas
0.19.
– kabanus
Nov 14 '18 at 22:53
add a comment |
1
This works, but not as is. It was creating a ton of duplicate columns and adding all of the numbers, resulting in inaccurate values. But adding two methods to the chain,reset_index
anddrop_duplicates
, worked:pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+') .reset_index().drop_duplicates(subset=['ID', 'Num']) .groupby(['ID','Category'])['Quantity'].sum() .unstack().reset_index()
– robroc
Nov 14 '18 at 22:48
I'll add this nifty solution also needs some adaptation for the olderpandas
0.19.
– kabanus
Nov 14 '18 at 22:53
1
1
This works, but not as is. It was creating a ton of duplicate columns and adding all of the numbers, resulting in inaccurate values. But adding two methods to the chain,
reset_index
and drop_duplicates
, worked: pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+') .reset_index().drop_duplicates(subset=['ID', 'Num']) .groupby(['ID','Category'])['Quantity'].sum() .unstack().reset_index()
– robroc
Nov 14 '18 at 22:48
This works, but not as is. It was creating a ton of duplicate columns and adding all of the numbers, resulting in inaccurate values. But adding two methods to the chain,
reset_index
and drop_duplicates
, worked: pd.wide_to_long(df,['Substance','Category','Quantity'], 'ID','Num','','.+') .reset_index().drop_duplicates(subset=['ID', 'Num']) .groupby(['ID','Category'])['Quantity'].sum() .unstack().reset_index()
– robroc
Nov 14 '18 at 22:48
I'll add this nifty solution also needs some adaptation for the older
pandas
0.19.– kabanus
Nov 14 '18 at 22:53
I'll add this nifty solution also needs some adaptation for the older
pandas
0.19.– kabanus
Nov 14 '18 at 22:53
add a comment |
Here is my semi-manual approach:
>>> df
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 74 49
1 B Natural Gas Salt water Gas Water 75 91
2 C Gasoline Waste water Refined Water 24 38
3 D Diesel Motor oil Refined Oil 19 95
4 E Bitumen Sour Gas Oil Gas 50 35
>>> newdf=pd.DataFrame(columns=set(df[['Category1','Category2']].values.flatten()),index=df.index)
>>> for name in newdf:
newdf[name]=pd.concat([df[df['Category1']==name]['Quantity1'],df[df['Category2']==name]['Quantity2']])
...
>>> newdf
Gas Oil Water Refined
0 49 74 NaN NaN
1 75 NaN 91 NaN
2 NaN NaN 38 24
3 NaN 95 NaN 19
4 35 50 NaN NaN
add a comment |
Here is my semi-manual approach:
>>> df
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 74 49
1 B Natural Gas Salt water Gas Water 75 91
2 C Gasoline Waste water Refined Water 24 38
3 D Diesel Motor oil Refined Oil 19 95
4 E Bitumen Sour Gas Oil Gas 50 35
>>> newdf=pd.DataFrame(columns=set(df[['Category1','Category2']].values.flatten()),index=df.index)
>>> for name in newdf:
newdf[name]=pd.concat([df[df['Category1']==name]['Quantity1'],df[df['Category2']==name]['Quantity2']])
...
>>> newdf
Gas Oil Water Refined
0 49 74 NaN NaN
1 75 NaN 91 NaN
2 NaN NaN 38 24
3 NaN 95 NaN 19
4 35 50 NaN NaN
add a comment |
Here is my semi-manual approach:
>>> df
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 74 49
1 B Natural Gas Salt water Gas Water 75 91
2 C Gasoline Waste water Refined Water 24 38
3 D Diesel Motor oil Refined Oil 19 95
4 E Bitumen Sour Gas Oil Gas 50 35
>>> newdf=pd.DataFrame(columns=set(df[['Category1','Category2']].values.flatten()),index=df.index)
>>> for name in newdf:
newdf[name]=pd.concat([df[df['Category1']==name]['Quantity1'],df[df['Category2']==name]['Quantity2']])
...
>>> newdf
Gas Oil Water Refined
0 49 74 NaN NaN
1 75 NaN 91 NaN
2 NaN NaN 38 24
3 NaN 95 NaN 19
4 35 50 NaN NaN
Here is my semi-manual approach:
>>> df
ID Substance1 Substance2 Category1 Category2 Quantity1 Quantity2
0 A Crude Oil Natural Gas Oil Gas 74 49
1 B Natural Gas Salt water Gas Water 75 91
2 C Gasoline Waste water Refined Water 24 38
3 D Diesel Motor oil Refined Oil 19 95
4 E Bitumen Sour Gas Oil Gas 50 35
>>> newdf=pd.DataFrame(columns=set(df[['Category1','Category2']].values.flatten()),index=df.index)
>>> for name in newdf:
newdf[name]=pd.concat([df[df['Category1']==name]['Quantity1'],df[df['Category2']==name]['Quantity2']])
...
>>> newdf
Gas Oil Water Refined
0 49 74 NaN NaN
1 75 NaN 91 NaN
2 NaN NaN 38 24
3 NaN 95 NaN 19
4 35 50 NaN NaN
answered Nov 14 '18 at 22:39
kabanuskabanus
11.6k31339
11.6k31339
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53309324%2freshape-pandas-dataframe-to-turn-categorical-columns-into-individual-columns%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown